Outline

- Relational Algebra (6.1)
- E/R Model (7.2 - 7.4)
- E/R Diagrams (7.5)
- Reduction to Schema (7.6)
- Relational Database Design (7.7)
- Functional Dependencies (8.1 – 8.4)
- Normalization (8.5 – 8.7)
- Relational Query Languages
 - SQL Basics
 - Formal Semantics of SQL

Relationship Set Keys

- General rule for binary relationships
 - one-to-one: primary key of either entity set
 - one-to-many: primary key of the many side
 - many-to-many: union of primary keys of the associate entity sets

- n-ary relationships
 - More complicated rules
Alternative Notation for Cardinality Limits

- Cardinality limits can also express participation constraints.

<table>
<thead>
<tr>
<th>Instructor</th>
<th>0..*</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>salary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>1..1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tot_cred</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary keys of entity sets together form super key of a relationship set.

- \((s_id, i_id)\) is the super key of advisor
- **NOTE**: this means an entity pair have at most one relationship in a relationship set.
 - Example: if we wish to track multiple meeting dates between a student and her advisor, we cannot assume a relationship for each meeting.
 - Fix: use a multivalued attribute.

- Must consider the mapping cardinality of the relationship set when identifying candidate keys.
- Consider relationship set semantics in selecting the primary key if more than one candidate key.

Summary: Keys for Relationship Sets
Weak Entity Sets

• An entity set that does not have a primary key is referred to as a **weak entity set**.

• The existence of a weak entity set depends on the existence of an **identifying entity set**
 - It must relate to the identifying entity set via a one-to-many relationship set from the identifying to the weak entity set
 - Weak side of relationship set must be **total**
 - **Identifying relationship** depicted using a **double diamond**

• The **discriminator** (or **partial key**) of a weak entity set is the set of attributes that **help** distinguish among all the entities of a weak entity set.

• Primary key of a weak entity set is:
 - primary key of the strong entity set on which the weak entity set is existent-dependent,
 - plus the weak entity set’s discriminator.

Weak Entity Sets (Cont.)

• We underline the discriminator of a weak entity set with a dashed line.

• We put the identifying relationship of a weak entity in a double diamond.

• Primary key for **section** – \((course_id, sec_id, semester, year)\)
Weak Entity Sets (Cont.)

- Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.

- If course_id were explicitly stored, section could be made a strong entity, but then the relationship between section and course would be duplicated by an implicit relationship defined by the attribute course_id common to course and section.

- Duplication is bad

Summary of E-R Notation

- E: entity set
- R: relationship set
- A1, A2, A2.1, A2.2, A3, A4: attributes
- A1: primary key
- A2.1: discriminating attribute of weak entity set
- A3: total participation of entity set in relationship
- A2: identifying relationship set for weak entity set
Symbols Used in E-R Notation (Cont.)

- \(R \rightarrow \) many-to-many relationship
- \(R \rightarrow \) many-to-one relationship
- \(R \leftarrow \) one-to-one relationship
- \(R \rightarrow \) cardinality limits
- role-name
- role indicator

E-R Diagram for a University Enterprise
Reduction to Relational Schemas

Outline

- Relational Algebra (6.1)
- E/R Model (7.2 - 7.4)
- E/R Diagrams (7.5)
- Reduction to Schema (7.6)
- Relational Database Design (7.7)
- Functional Dependencies (8.1 – 8.4)
- Normalization (8.5 – 8.7)
Reduction to Relation Schemas

- Entity sets and relationship sets can be expressed uniformly as *relation schemas* that represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of schemas.
- For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Entity Sets

- A strong entity set reduces to a schema with the same attributes:
 \[\text{student}(\text{course_ID}, \text{title}, \text{credits}) \]
- A weak entity set becomes a table that includes a foreign key for the primary key of the identifying strong entity set:
 \[\text{section} (\text{course_id}, \text{sec_id}, \text{semester}, \text{year}) \]
Representing Relationship Sets

- A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.

- Example: schema for relationship set advisor:

 \[\text{advisor}(s_id, i_id) \]

\[\text{instructor} \]
 + \(ID \)
 + name
 + salary

\[\text{student} \]
 + \(ID \)
 + name
 + tot_cred

Redundancy of Schemas

- Many-to-one and one-to-many relationship sets that are **total** on the many-side can be represented by adding an extra attribute(s) to the “many” side, containing the primary key of the “one” side.

- Example:
 - get rid of inst_dept by:

 \[\text{instructor}(ID, \text{name}, \text{salary}) \rightarrow \text{instructor}(ID, \text{dept_name}, \text{name}, \text{salary}) \]

\[\text{department} \]
 + dept_name
 + building
 + budget

\[\text{inst_dept} \]

\[\text{student} \]
 + \(ID \)
 + name
 + tot_cred

\[\text{department} \]
 + dept_name
 + building
 + budget

\[\text{stud_dept} \]
For one-to-one relationship sets, either side can be chosen to act as the “many” side to eliminate the relationship set schema, but it must be total.

- For example, the inst_dept relation could be eliminated by copying the dept_name attribute into the instructor relation, but we can not do it the other way around (because of nulls).

```
Instructor
ID
name
salary

department
dept_name
building
budget

instructor(ID, dept_name, name, salary)
```

or

```
deptartment(dept_name, ID, building, budget)
```

If participation is partial on the “many” side, replacing a relationship schema by an extra attribute in the schema corresponding to the “many” side could result in null values (generally avoided)

- i.e. the approach in the previous slides does not work
- need to represent relationship as a separate table

A relationship set linking a weak entity set to its identifying strong entity set is redundant.

- Example: The section schema already contains the attributes that would appear in the sec_course schema
- Unless otherwise instructed, assume we wish to avoid NULLs when converting to relations, i.e. remove redundant relationship schema only when total participation on side where adding attribute.
Composite Attributes

- Composite attributes flattened out
 - Example: given entity set instructor
 - with composite attribute name
 - with component attributes first_name and last_name
 - replace with name_first_name and name_last_name
 - Prefix omitted if there is no ambiguity
 - Ignoring multivalued attributes, extended instructor schema is
 - instructor(ID, first_name, middle_initial, last_name, street_number, street_name, apt_number, city, state, zip_code, date_of_birth)

Multivalued Attributes

- Multivalued attribute \(M \) of entity \(E \) represented by a separate schema \(EM \)
 - Schema \(EM \) includes \(E \)'s primary key and attribute corresponding to \(M \)
 - Example: Multivalued attribute phone_number of instructor:
 - \(\text{inst_phone}= (ID, \text{phone_number}) \)
 - Each value of the multivalued attribute maps to separate tuple of \(EM \):
 - instructor entity with primary key 22222 and numbers 456-7890 and 123-4567 maps to:
 - (22222, 456-7890)
 - (22222, 123-4567)
Reduction to Relational Schemas

Outline

- Relational Algebra (6.1)
- E/R Model (7.2 - 7.4)
- E/R Diagrams (7.5)
- Reduction to Schema (7.6)
- Relational Database Design (7.7)
- Functional Dependencies (8.1 – 8.4)
- Normalization (8.5 – 8.7)
ER Diagram to Relational Schema

- Schema per entity set
 - expand composite attributes
 - new schema for multi-valued
 - drop derived attributes for now
- Schema per relationship set

lots of foreign key dependences (weak, relationships..)

ER Diagram to Relational Schema

- Schema per entity set
 - expand composite attributes
 - new schema for multi-valued
 - drop derived attributes for now
- Schema per relationship set

lots of foreign key dependences (weak, relationships..)
ER Diagram to Relational Schema

- Schema per entity set
 - expand composite attributes
 - new schema for multi-valued
 - drop derived attributes for now

- Schema per relationship set
 - department(dept_name, building, budget)
 - instructor(id, name, salary)
 - course(course_id, title, credits)
 - section(sec_id, course_id, semester, year)
 - student(id, name, tot_cred)
 - classroom(building, room_number, capacity)
 - time_slot(time_slot_id, day, start_time, end_time)
 - inst_dept(id, dept_name)
 - stud_dept(id, dept_name)
 - teaches(id, sec_id, semester, course_id, year)
 - takes(id, course_id, sec_id, semester, year, grade)
 - advisor(i_id, s_id)
 - course_dept(course_id, dept_name)
 - sec_time_slot(course_id, sec_id, semester, year, time_slot_id)
 - sec_course(course_id, sec_id, semester, year)
 - prereq(course_id, prereq_id)
 - sec_class(course_id, sec_id, semester, year, building, room_number)

lots of foreign key dependences (weak, relationships...)

ER Diagram to Relational Schema

- Schema per entity set
 - expand composite attributes
 - new schema for multi-valued
 - drop derived attributes for now

- Schema per relationship set
 - department(dept_name, building, budget)
 - instructor(id, name, salary)
 - course(course_id, title, credits)
 - section(sec_id, course_id, semester, year)
 - student(id, name, tot_cred)
 - classroom(building, room_number, capacity)
 - time_slot(time_slot_id, day, start_time, end_time)
 - inst_dept(id, dept_name)
 - stud_dept(id, dept_name)
 - teaches(id, sec_id, semester, course_id, year)
 - takes(id, course_id, sec_id, semester, year, grade)
 - advisor(i_id, s_id)
 - course_dept(course_id, dept_name)
 - sec_time_slot(course_id, sec_id, semester, year, time_slot_id)
 - sec_course(course_id, sec_id, semester, year)
 - prereq(course_id, prereq_id)
 - sec_class(course_id, sec_id, semester, year, building, room_number)

lots of foreign key dependences (weak, relationships...)
ER Diagram to Relational Schema

- Schema per entity set
 - expand composite attributes
 - new schema for multi-valued
 - drop derived attributes for now
- Schema per relationship set

 ![Diagram](image)

 - department(dept_name, building, budget)
 - instructor(id, dept_name, name, salary)
 - course(course_id, title, credits)
 - section(sec_id, course_id, semester, year)
 - student(id, name, tot_cred)
 - classroom(building, room_number, capacity)
 - time_slot(time_slot_id, day, start_time, end_time)
 - inst_dept(id, dept_name)
 - stud_dept(id, dept_name)
 - teaches(id, sec_id, semester, course_id, year)
 - takes(id, course_id, sec_id, semester, year, grade)
 - advisor(i_id, s_id)
 - course_dept(course_id, dept_name)
 - sec_time_slot(course_id, sec_id, semester, year, time_slot_id)
 - sec_course(course_id, sec_id, semester, year)
 - prereq(course_id, prereq_id)
 - sec_class(course_id, sec_id, semester, year, building, room_number)

 lots of foreign key dependences (weak, relationships..)
ER Diagram to Relational Schema

• Schema per entity set
 • expand composite attributes
 • new schema for multi-valued
 • drop derived attributes for now

• Schema per relationship set

 lots of foreign key dependences (weak, relationships..)
• Schema per entity set
 - expand composite attributes
 - new schema for multi-valued
 - drop derived attributes for now

• Schema per relationship set
 - lots of foreign key dependences (weak, relationships..)

ER Diagram to Relational Schema

- department(dept_name, building, budget)
- instructor(ID, dept_name, name, salary)
- course(course_id, title, credits, dept_name)
- section(sec_id, course_id, semester, year, building, room_number, time_slot_id)
- student(ID, dept_name, name, tot_cred)
- classroom(building, room_number, capacity)
- time_slot(time_slot_id, day, start_time, end_time)

- inst_dept(ID, dept_name)
- stud_dept(ID, dept_name)
- teaches(ID, sec_id, semester, course_id, year)
- takes(ID, course_id, sec_id, semester, year, grade)
- advisor(i_id, s_id)
- course_dept(course_id, dept_name)
- sec_time_slot(course_id, sec_id, semester, year, time_slot_id)
- sec_course(course_id, sec_id, semester, year)
- prereq(course_id, prereq_id)
- sec_class(building, room_number, capacity, building, room_number)

Binary Vs. Non-Binary Relationships

• Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g., a ternary relationship parents, relating a child to his/her parent1 and parent2, is best replaced by two binary relationships, parent1 and parent2
 - Using two binary relationships allows partial information (e.g., only parent2 being known)
 - But there are some relationships that are naturally non-binary
 - Example: proj_group, with several project members
Converting Non-Binary Relationships to Binary Form

- In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set.
 - Replace R between entity sets A, B, and C by an entity set E, and R_A, R_B, R_C, relating E with A, B, and C
 - Create a special identifying attribute for E
 - Attributes E are all those of R, plus special identifier
 - For each relationship (a_i, b_i, c_i) in R
 - create a new entity e_i in the entity set E
 - add (e_i, a_i) to R_A, etc.

![Diagram of conversion from non-binary to binary relationships]

Design Considerations

- **Binary versus n-ary relationship sets**
 Although it is possible to replace any nonbinary (n-ary, for $n > 2$) relationship set by a number of distinct binary relationship sets, a n-ary relationship set shows more clearly that several entities participate in a single relationship.

- **Placement of relationship attributes**
 e.g., attribute date as attribute of advisor or as attribute of student