Outline

- Relational Algebra (6.1)
- E/R Model (7.2 - 7.4)
- E/R Diagrams (7.5)
- Reduction to Schema (7.6)
- Relational Database Design (7.7)
- Functional Dependencies (8.1 – 8.4)
- Normalization (8.5 – 8.7)

Another Example: Movie Industry
Relational Database Design

- Where did we come up with the schema that we used?
 - E.g. why not store the actor names with movies?

- If from an E-R diagram, then:
 - Did we make the right decisions with the E-R diagram?

Goals:

- Formal definition of what it means to be a “good” schema.
- How to achieve it.

Summary of Common Schema Reductions

- Many-to-one, total on the many side
 - Add the one side’s primary key to the many side
 - Eliminate the relationship’s relation schema

- One-to-one, total on at least one side (same thing)
 - Add the non-total side’s primary key to the total side
 - Eliminate the relationship’s relation schema

- Weak entity set
 - Primary key of identifying entity set added to weak entity set
 - Relation schema of relationship set is subset of weak entity set
 - Eliminate relationship’s relation schema

None allow nulls
Relational Schemas and Redundancy

- movies(name, year, len)
- stars(name, addr, gender, birthdate)
- execs(name, cert#)
- studios(stud_name, address)

- in(star_name, movie_name, movie_year)
- made_by(movie_name, movie_year, stdname)
- produced_by(movie_name, movie_year, cert#)
- helmed_by(cert#, stud_name)
Relational Schemas and Redundancy

- movies(name, year, len, studio_name)
- stars(name, addr, gender, birthdate)
- execs(name, cert#)
- studios(stud_name, address, pres#)
- in(star_name, movie_name, movie_year)
- produced_by(movie_name, movie_year, cert#)

Is this a good idea???
What Should a Table Contain?

```sql
Movie(title, year, length, inColor, studioName, producerC#, starName)
```

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>Yes</td>
<td>Universal</td>
<td>150</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>No</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Issues:
1. Redundancy → higher storage, inconsistencies (“anomalies”)
 - update anomalies, insertion anomalies
2. Need nulls
 Unable to represent some information without using nulls
 How to store movies w/o actors (pre-productions etc) ?

We will usually split such tables.

What Should a Table Contain?

```sql
Movie(title, year, length, inColor, studioName, producerC#, starNames)
```

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>starNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>{Hamill, Fisher, H. Ford}</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>Yes</td>
<td>Universal</td>
<td>150</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>No</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Issues:
3. Avoid sets
 - Hard to represent
 - Hard to query

We will usually split such tables.
Are Smaller Tables Always Good?

Split Studio (name, address, presC#) into:

Studio1 (name, presC#), Studio2 (name, address)???

This process is also called “decomposition”

Issues:
4. Requires more joins (w/o any obvious benefits)
5. Hard to check for some dependencies
 - What if the “address” is actually the presC#’s address?
 - No easy way to ensure that constraint (w/o a join).

<table>
<thead>
<tr>
<th>Name</th>
<th>presC#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox</td>
<td>101</td>
</tr>
<tr>
<td>Studio2</td>
<td>101</td>
</tr>
<tr>
<td>Universial</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox</td>
<td>Address1</td>
</tr>
<tr>
<td>Studio2</td>
<td>Address1</td>
</tr>
<tr>
<td>Universial</td>
<td>Address2</td>
</tr>
</tbody>
</table>

Are Smaller Tables Always Good?

Decompose StarsIn (movieTitle, movieYear, starName) into:

StarsIn1(movieTitle, movieYear)
StarsIn2(movieTitle, starName) ???

<table>
<thead>
<tr>
<th>movieTitle</th>
<th>movieYear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>movieTitle</th>
<th>starName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Wars</td>
<td>Hamill</td>
</tr>
<tr>
<td>King Kong</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>Faye</td>
</tr>
</tbody>
</table>

Issues:
6. “joining” them back results in more tuples than what we started with
 (King Kong, 1933, Watts) & (King Kong, 2005, Faye)
 This is a “lossy” decomposition
 We lost some constraints/information
 The previous example was a “lossless” decomposition.
What We Want

- No sets
- Correct and faithful to the original design
 - Avoid lossy decompositions
- As little redundancy as possible
 - To avoid potential anomalies
- No “inability to represent information”
 - Nulls shouldn’t be required to store information
- Dependency preservation
 - Should be possible to check for constraints

Not always possible.
We sometimes relax these for:
 simpler schemas, and *fewer joins during queries.*
Mechanisms and definitions to work with FDs
- Closures, candidate keys, canonical covers etc...
- Armstrong axioms

Decompositions
- Loss-less decompositions, Dependency-preserving decompositions

BCNF
- How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem
Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs)
 - SSN → name (means: SSN “implies” (“determines”) length)
 - If two tuples have the same “SSN”, they must have the same “name”
 movietitle → length ??? Not true.
 - But, (movietitle, movieYear, movieDirector) → length --- True.

2. We will define a set of rules that the schema must follow to be “good”
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

FDs: Example

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Dept Name</th>
<th>Credits</th>
<th>Section ID</th>
<th>Semester</th>
<th>Year</th>
<th>Building</th>
<th>Room No.</th>
<th>Capacity</th>
<th>Time Slot ID</th>
</tr>
</thead>
</table>

Functional dependencies:

- course_id →
- building, room_number →
- course_id, section_id, semester, year →
FDs: Example

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Dept Name</th>
<th>Credits</th>
<th>Section ID</th>
<th>Semester</th>
<th>Year</th>
<th>Building</th>
<th>Room No.</th>
<th>Capacity</th>
<th>Time Slot ID</th>
</tr>
</thead>
</table>

Functional dependencies:

- course_id → course_name, dept_name, credits
- building, room_number →
- course_id, section_id, semester, year →

FDs: Example

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Dept Name</th>
<th>Credits</th>
<th>Section ID</th>
<th>Semester</th>
<th>Year</th>
<th>Building</th>
<th>Room No.</th>
<th>Capacity</th>
<th>Time Slot ID</th>
</tr>
</thead>
</table>

Functional dependencies:

- course_id → course_name, dept_name, credits
- building, room_number → capacity
- course_id, section_id, semester, year →
FDs: Example

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Dept Name</th>
<th>Credits</th>
<th>Section ID</th>
<th>Semester</th>
<th>Year</th>
<th>Building</th>
<th>Room No.</th>
<th>Capacity</th>
<th>Time Slot ID</th>
</tr>
</thead>
</table>

Functional dependencies:

• course_id \(\rightarrow \) course_name, dept_name, credits
• building, room_number \(\rightarrow \) capacity
• course_id, section_id, semester, year \(\rightarrow \) building, room_number, time_slot_id

Functional Dependencies

- Let \(r(R) \) be a relation schema and \(\alpha \subseteq R \) and \(\beta \subseteq R \)
- The **functional dependency** \(\alpha \rightarrow \beta \)
 holds on \(R \) iff for any *legal* relations \(r(R) \), whenever two tuples \(t_1 \) and \(t_2 \) of \(r \) have same values for \(\alpha \), they have same values for \(\beta \).

\[
t_1[\alpha] = t_2[\alpha] \quad \Rightarrow \quad t_1[\beta] = t_2[\beta]
\]

- Example:

 - On this instance, \(A \rightarrow B \) does NOT hold, but \(B \rightarrow A \) does hold.

\[
\begin{array}{cc}
A & B \\
1 & 4 \\
1 & 5 \\
3 & 7 \\
\end{array}
\]
Functional Dependencies

- Difference between holding on an instance and holding on all legal relations

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

- Title \(\rightarrow\) Year holds on this instance
- Is this a true functional dependency? **No.**
 - Two movies in different years can have the same name.
 - Can’t draw conclusions based on a single instance
 - Need **domain knowledge to decide which FDs hold**

FDs and Redundancy

- Consider a table: \(R(A, B, C)\):
 - assume FDs: \(B \rightarrow C\), and \(A \rightarrow BC\)
 - so “A” is a Key, but “B” is not
- We have an FD whose left hand side is not a key
 - Leads to redundancy

Since B is not unique, it may be duplicated
Every time B is duplicated, so is C

Not a problem with \(A \rightarrow BC\)
A can never be duplicated

Not a duplication \(\rightarrow\) Two different tuples just happen to have the same value for C
Functional Dependencies

- Functional dependencies and keys:
 - A key constraint is a specific form of a FD.
 - E.g. if \(\alpha \) is a superkey for \(R \), then:
 \[\alpha \rightarrow R \]
 - Similarly for candidate keys and primary keys.

- Deriving FDs
 - A set of FDs may imply other FDs
 - E.g. If \(A \rightarrow B \), and \(B \rightarrow C \), then clearly \(A \rightarrow C \)
 - We will see a formal method for inferring this later

Definitions

1. A relation instance \(r \) satisfies a set of functional dependencies, \(F \), if the FDs hold on the relation
2. \(F \) holds on a relation schema \(R \) if no legal (allowable) relation instance of \(R \) violates it
3. A functional dependency, \(\alpha \rightarrow \beta \), is called trivial if:
 - \(\alpha \) is a superset of \(\beta \)
 - E.g. Movieyear, length \(\rightarrow \) length
4. Given a set of functional dependencies, \(F \), its closure, \(F^+ \), is all the FDs that are implied by FDs in \(F \).
1. We will encode and list all our knowledge about the schema
 ◦ Functional dependencies (FDs)
 ◦ Also:
 • Multi-valued dependencies (briefly discuss later)
 • Join dependencies etc...

2. We will define a set of rules that the schema must follow to be considered good
 ◦ “Normal forms”: 1NF, 2NF, BCNF, 3NF, 4NF, ...
 ◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

BCNF: Boyce-Codd Normal Form

A relation schema R is “in BCNF” if:
 ◦ Every functional dependency $\alpha \rightarrow \beta$ that holds on it is EITHER:
 1. Trivial OR
 2. α is a superkey of R

Why is BCNF good?
 ◦ Guarantees that there can be no redundancy because of a functional dependency

 Consider a relation $r(A, B, C, D)$ with functional dependency with
 ◦ $A \rightarrow B$
 ◦ (a_1, b_1, c_1, d_1), and (a_1, b_1, c_2, d_2)
 ◦ b_1 is repeated because of the functional dependency
 ◦ BUT this relation is not in BCNF
 $A \rightarrow B$ is neither trivial nor is A a superkey for the relation
Why does redundancy arise?

- Given a FD, $\alpha \rightarrow \beta$, if α is repeated ($\beta - \alpha$) has to be repeated
 1. If rule 1 (triviality) is satisfied, ($\beta - \alpha$) is empty, so not a problem.
 2. If rule 2 (key) is satisfied, then α can’t be repeated, also no problem.

Hence no redundancy because of FDs in BCNF

- Redundancy may exist because of other types of dependencies
 - Higher normal forms used for that (specifically, 4NF)
 - Data may naturally have duplicated/redundant data
 - We can’t control that unless a FD or some other dependency is defined

Approach

1. We will encode and list all our knowledge about the schema:
 - Functional dependencies (FDs); Multi-valued dependencies; Join dependencies etc...

2. We will define rules the schema must follow to be “good”
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
 - Through lossless decomposition (splitting)
 - Or direct construction using the dependencies information
BCNF

- What if the schema is not in BCNF?
 - Decompose (split) the schema into two pieces.

 From the previous example: split the schema into:
 - \(r_1(A, B), \ r_2(A, C, D) \)
 - The first schema is in BCNF, the second one may not be (and may require further decomposition)
 - No repetition now: \(r_1 \) contains \((a_1, b_1)\), but \(b_1 \) will not be repeated

- Careful: you want the decomposition to be **lossless**
 - No information should be lost
 - The above decomposition is lossless
 - We will define this more formally later

1. Closure of Functional Dependencies

- Given a set of functional dependencies, \(F \), its **closure**, \(F^+ \), is all FDs that are implied by FDs in \(F \):
 - e.g. If \(A \to B \), and \(B \to C \), then clearly \(A \to C \)

- We can find \(F^+ \) by applying **Armstrong’s Axioms**:
 - if \(\beta \subseteq \alpha \), then \(\alpha \to \beta \) (reflexivity)
 - if \(\alpha \to \beta \), then \(\gamma \alpha \to \gamma \beta \) (augmentation)
 - if \(\alpha \to \beta \), and \(\beta \to \gamma \), then \(\alpha \to \gamma \) (transitivity)

- These rules are
 - sound (generate only functional dependencies that actually hold)
 - complete (generate all functional dependencies that hold)
Additional rules (not Armstrong’s axioms)

- If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$. (union)
- If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)
- If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

- The above rules can be inferred from Armstrong’s axioms.

Example (only Armstrong’s axioms)

- $F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

- Some members of F^+
 - $A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$
 - and then transitivity with $AG \rightarrow CG \rightarrow I$
 - $CG \rightarrow HI$
 - by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$
 - and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$
 - and then transitivity: $CG \rightarrow CGI \rightarrow HI$