Functional Dependencies!

3. Extraneous Attributes

Consider F, and a functional dependency, $\alpha \rightarrow \beta$.

“Extraneous”: Any attributes in α or β that can be safely removed?

Without changing the constraints implied by F

- σ is extraneous in α if:
 1. σ is in α, and
 2. $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - \sigma) \rightarrow \beta\}$, F logically implies F' or
 1. let $\alpha = \sigma \gamma$
 2. show γ^* includes β under F

- A is extraneous in β if:
 1. σ is in β, and
 2. $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - \sigma)\}$
 3. F' logically implies F, or
 1. show α^* includes σ under F'
3. Extraneous Attributes

Example: Given \(F = \{ A \rightarrow C, AB \rightarrow CD \} \), show \(C \) extra in \(AB \rightarrow CD \)

- \(F' = \{ A \rightarrow C, AB \rightarrow D \} \)
- Need to show \(F' \rightarrow F \), means showing \(AB \rightarrow CD \) given \(F' \)

Using Armstrongs:
- We know:
 - \(AB \rightarrow D \) \((F') \)
 - \(ABC \rightarrow CD \) \((aug) \)
- but:
 - \(A \rightarrow C \) \((F') \)
 - \(AB \rightarrow BC \) \((aug) \)
 - \(AB \rightarrow ABC \) \((aug) \)
 - \(AB \rightarrow ABC \rightarrow CD \) \((trans) \) done.

or attribute closures, show \(\alpha + \) includes \(C \) under \(F' \)
- \(\beta = AB \)
- \(= ABC \) \((A \rightarrow C) \) done.

3. Extraneous Attributes

Example: Given \(F = \{ A \rightarrow BE, B \rightarrow C, C \rightarrow D, AC \rightarrow DE \} \), remove extraneous attributes

- For left side of \(AC \rightarrow DE \)
 - \(A \) extraneous? \(C^* = CD \), NOT include \(\beta \)
 - \(C \) extraneous? \(A^* = ABCDE \), YES includes \(\beta \)
 - \(F = A \rightarrow BE, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)

- For right side,
 - \(B \) extraneous in \(A \rightarrow BE? \)
 - \(F' = A \rightarrow E, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - no, \(A^+ \) is ADE and not \(B \), so no.
 - \(E \) extraneous in \(A \rightarrow BE? \)
 - \(F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - yes, \(A^+ \) is ABCDE includes \(E \), so yes.

- \(F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - \(D \) extraneous in right side of \(A \rightarrow DE? \)
 - \(F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E \)
 - yes, \(A^+ \) includes \(D \)

- \(F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E \)
4. Canonical Cover

- A **canonical cover** for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique

- In some (vague) sense, it is a *minimal* version of F:

 repeat

 1. use union rule to merge right sides
 2. eliminate extraneous attributes

- until F_c does not change

4. Canonical Cover

- $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$, $AC \rightarrow BD$

- **Cover:**
 - $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$, $AC \rightarrow BD$
 - $A \rightarrow BC, C \rightarrow D, AC \rightarrow BD$ (union)
 - a extra in $ac \rightarrow bd$?
 - no, $c^* = cd$, doesn’t include “bd”
 - c extra in $ac \rightarrow bd$?
 - yes, $a^* = abcd$, includes “bd”
 - $A \rightarrow BC, C \rightarrow D, A \rightarrow BD$
 - $A \rightarrow BCD, C \rightarrow D$ (union)
 - b extra in $a \rightarrow bcd$? ($F' = a \rightarrow cd, c \rightarrow d$)
 - no $a^* = cd$ in F', not include “bd”
 - c extra in $a \rightarrow bcd$? ($F' = a \rightarrow bd, c \rightarrow d$)
 - no $a^* = bd$ in F', not include “cd”
 - d extra in $a \rightarrow bcd$? ($F' = a \rightarrow bc, c \rightarrow d$)
 - yes, $a^* = bcd$ in F', includes “d”

- $A \rightarrow BC, C \rightarrow D$
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

Loss-less Decompositions

Definition: A decomposition of \(R \) into \((R_1, R_2)\) is called *lossless* if, for all legal instance of \(r(R) \):

\[
r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) \quad \text{or} \quad (\text{select all } R_1 \text{ join } \text{select all } R_2)
\]

or

\[
(\text{select * from (select } R_1 \text{ from } r) \text{ natural join } \text{select } R_2 \text{ from } r)
\]

In other words, projecting on \(R_1 \) and \(R_2 \), and joining back, results in the relation you started with.

Rule: A decomposition of \(R \) into \((R_1, R_2)\) is *lossless*, iff:

\[
R_1 \cap R_2 \rightarrow R_1 \quad \text{or} \quad R_1 \cap R_2 \rightarrow R_2
\]

in \(F^+ \).

... R_1 \cap R_2 must be key for R_1 or R_2
Dependency-preserving Decompositions

- Is it easy to check if dependencies in F hold?
 - Yes if dependencies can be checked in the same table.
- Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C\}$

1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 - Lossless? Yes.
 - But harder to check for $B \rightarrow C$ as the data is in multiple tables.
2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$,
 - is both lossless and dependency-preserving

Definition:

- Consider decomposition of R into R_1, \ldots, R_n.
- Let F_i be the set of dependencies F^+ that include only attributes in R_i.

- The decomposition is dependency preserving, if
 \[(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+\]
Mechanisms and definitions to work with FDs
 ◦ Closures, candidate keys, canonical covers etc...
 ◦ Armstrong axioms

Decompositions
 ◦ Loss-less decompositions, Dependency-preserving decompositions

BCNF
 ◦ How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

Normalization
Recall that given a relation schema R, and a set of functional dependencies F, if every FD, $\alpha \rightarrow \beta$, is either:

1. Trivial
2. α is a superkey of R

Then, R is in BCNF (Boyce-Codd Normal Form) No redundancy

What if the schema is not in BCNF?

- Decompose (split) the schema into two pieces.
- Careful: you want the decomposition to be lossless

Achieving BCNF Schemas

- For all dependencies $\alpha \rightarrow \beta$ in F^+, check if A is a superkey
 - By using attribute closure

- If not, then
 - Choose a dependency in F^+ that breaks the BCNF rules, say $\alpha \rightarrow \beta$
 - Create $R_1 = \alpha \beta$
 - Create $R_2 = \alpha(R - \beta - \alpha)$
 - Note that: $R_1 \cap R_2 = \alpha$ and $\alpha \rightarrow \alpha \beta (\equiv R_1)$, so this is lossless decomposition

- Repeat for R_1, and R_2
 - By defining F_1 to be all dependencies in F that contain only attributes in R_1
 - Similarly F_2
Achieving BCNF Schemas

Example 1

R = (A, B, C)
F = {A → B, B → C}
Candidate keys = {A}

\[B \rightarrow C \]

R1 = (B, C)
F1 = {B → C}
Candidate keys = {B}
BCNF = true

R2 = (A, B)
F2 = {A → B}
Candidate keys = {A}
BCNF = true

Dependency preservation???
Yes

Example 2

R = (A, B, C, D, E)
F = {A → B, BC → D}
Candidate keys = {ACE}
BCNF = Violated by {A → B, BC → D}

\[A \rightarrow B \]

R1 = (A, B)
F1 = {A → B}
Candidate keys = {A}
BCNF = true

R2 = (A, C, D, E)
F2 = {}
Candidate keys = {ACDE}
BCNF = true

Dependency preservation???
No: lost B→CD
Example 3

\[R = (A, B, C, D, E) \]
\[\text{F} = \{A \rightarrow B, BC \rightarrow D\} \]
\[\text{Candidate keys} = \{\text{ACE}\} \]
\[\text{BCNF} = \text{Violated by} \{A \rightarrow B, BC \rightarrow D\} \]

\[\text{BC} \rightarrow \text{D} \]

\[\text{R1} = (\text{BCD}) \]
\[\text{F1} = \{\text{BC} \rightarrow \text{D}\} \]
\[\text{Candidate keys} = \{\text{BC}\} \]
\[\text{BCNF} = \text{true} \]

\[\text{A} \rightarrow \text{B} \]

\[\text{R2} = (A, B, C, E) \]
\[\text{F2} = \{A \rightarrow B\} \]
\[\text{Candidate keys} = \{\text{ACE}\} \]
\[\text{BCNF} = \text{false (A} \rightarrow \text{B)} \]

\[\text{Dependency preservation ???} \]
\[\text{yes} \]

Example 4

\[R = (A, B, C, D, E, H) \]
\[\text{F} = \{A \rightarrow BC, E \rightarrow HA\} \]
\[\text{Candidate keys} = \{\text{DE}\} \]
\[\text{BCNF} = \text{Violated by} \{A \rightarrow BC\} \text{etc…} \]

\[\text{A} \rightarrow \text{BC} \]

\[\text{R1} = (A, B, C) \]
\[\text{F1} = \{A \rightarrow BC\} \]
\[\text{Candidate keys} = \{A\} \]
\[\text{BCNF} = \text{true} \]

\[\text{E} \rightarrow \text{HA} \]

\[\text{R3} = (E, H, A) \]
\[\text{F3} = \{E \rightarrow HA\} \]
\[\text{Candidate keys} = \{E\} \]
\[\text{BCNF} = \text{true} \]

\[\text{R4} = (ED) \]
\[\text{F4} = \{\} \text{ [only trivial]} \]
\[\text{Candidate keys} = \{\text{DE}\} \]
\[\text{BCNF} = \text{true} \]

\[\text{Dependency preservation ???} \]
\[\text{We can check:} \]
\[\text{A} \rightarrow \text{BC (R1)}, \text{E} \rightarrow \text{HA (R3)}, \text{Dependency-preserving decomposition} \]
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

BCNF may not preserve dependencies

- \(R = \{ J, K, L \} \)
- \(F = \{ JK \rightarrow L, L \rightarrow K \} \)

- Two candidate keys = \(JK \) and \(JL \)

- \(R \) is not in BCNF

- Any decomposition of \(R \) will fail to preserve \(JK \rightarrow L \)

- This implies that testing for \(JK \rightarrow L \) requires a join
BCNF may not preserve dependencies

- Not always possible to find a dependency-preserving decomposition that is in BCNF.

- PTIME to determine if there exists a dependency-preserving decomposition in BCNF
 - in size of F

- NP-Hard to find one if it exists

- Better results exist if F satisfies certain properties