Relational Database Design

or

"Troubles With Schemas"

Exam 1

Covers:
• lectures
• quizzes 1-4, first five questions on quiz 5
• assignments 1-4

Answers visible on gradescope:
• quiz 2
• quiz 3
• quiz 4 (2/24)
• quiz 5 questions 1-5 (3/1)

Practice exams will be posted today
• Not inclusive
• Have some topics we will not cover

Short review march 1
Outline

Relational Algebra (6.1)

E/R Model (7.2 - 7.4)

E/R Diagrams (7.5)

Reduction to Schema (7.6)

Relational Database Design (7.7)

Functional Dependencies (8.1 – 8.4)

Normalization (8.5 – 8.7)

Movie(title, year, length, inColor, studioName, producerC#, starName)

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>Yes</td>
<td>Universal</td>
<td>150</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Issues:
1. Redundancy ➔ higher storage, inconsistencies ("anomalies")
 update anomalies, insertion anomalies
2. Need nulls
 Unable to represent some information without using nulls
 How to store movies w/o actors (pre-productions etc)?
Issues:
3. Avoid sets
 - Hard to represent
 - Hard to query

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>{Hamill, Fisher, H. Ford}</td>
</tr>
<tr>
<td>King Kong</td>
<td>2005</td>
<td>187</td>
<td>Yes</td>
<td>Universal</td>
<td>150</td>
<td>Watts</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Smaller schemas always good ????

Split Studio(name, address, presC#) into:
 Studio1 (name, presC#),
 Studio2(name, address)???

<table>
<thead>
<tr>
<th>Name</th>
<th>presC#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox</td>
<td>101</td>
</tr>
<tr>
<td>Studio2</td>
<td>101</td>
</tr>
<tr>
<td>Universal</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox</td>
<td>Address1</td>
</tr>
<tr>
<td>Studio2</td>
<td>Address1</td>
</tr>
<tr>
<td>Universal</td>
<td>Address2</td>
</tr>
</tbody>
</table>

This process is also called “decomposition”

Issues:
4. Requires more joins (w/o any obvious benefits)
5. Hard to check for some dependencies
 What if the “address” is actually the presC#’s address ?
 No easy way to ensure that constraint (w/o a join).
Issues:
6. "joining" them back results in more tuples than what we started with
 (King Kong, 1933, Watts) & (King Kong, 2005, Faye)
 This is a “lossy” decomposition
 We lost some constraints/information
 The previous example was a “lossless” decomposition.

Desiderata
No sets
Correct and faithful to the original design
 » Avoid lossy decompositions
As little redundancy as possible
 » To avoid potential anomalies
No “inability to represent information”
 » Nulls shouldn’t be required to store information
Dependency preservation
 » Should be possible to check for constraints

Not always possible.
We sometimes relax these for:
simpler schemas, and fewer joins during queries.
Functional Dependencies!
Outline

Mechanisms and definitions to work with FDs
 » Closures, candidate keys, canonical covers etc...
 » Armstrong axioms

Decompositions
 » Loss-less decompositions, Dependency-preserving decompositions

BCNF
 » How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

Approach

1. We will encode and list all our knowledge about the schema
 • Functional dependencies (FDs)
 • SSN \(\rightarrow\) name (means: SSN “implies” (“determines”) length)
 • If two tuples have the same “SSN”, they must have the same “name”
 • movietitle \(\rightarrow\) length ???? Not true.
 • But, (movietitle, movieYear, movieDirector) \(\rightarrow\) length --- True.

2. We will define a set of rules that the schema must follow to be “good”
 • “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 • A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
Functional dependencies:

- course_id →
- building, room_number →
- course_id, section_id, semester, year →

Functional Dependencies

Let $r(R)$ be a relation schema and

$$\alpha \subseteq R \text{ and } \beta \subseteq R$$

The functional dependency

$$\alpha \rightarrow \beta$$

holds on R iff for any legal relations $r(R)$, whenever two tuples t_1 and t_2 of r have same values for α, they have same values for β.

$$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
</table>

On this instance, $A \rightarrow B$ does NOT hold, but $B \rightarrow A$ does hold.
Functional Dependencies

Difference between holding on an instance and holding on all legal relations

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Length</th>
<th>inColor</th>
<th>StudioName</th>
<th>prodC#</th>
<th>StarName</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Hamill</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>Fisher</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>121</td>
<td>Yes</td>
<td>Fox</td>
<td>128</td>
<td>H. Ford</td>
</tr>
<tr>
<td>King Kong</td>
<td>1933</td>
<td>100</td>
<td>no</td>
<td>RKO</td>
<td>20</td>
<td>Fay</td>
</tr>
</tbody>
</table>

Title → Year holds on this instance

Is this a true functional dependency? No.

• Two movies in different years can have the same name.

Can’t draw conclusions based on a single instance

• Need domain knowledge to decide which FDs hold

FDs and Redundancy

Consider a table: \(R(A, B, C) \):

• With FDs: \(B \rightarrow C \), and \(A \rightarrow BC \)

• So “A” is a Key, but “B” is not

So: there is a FD whose left hand side is not a key

• Leads to redundancy

Since B is not unique, it may be duplicated
Every time B is duplicated, so is C

Not a problem with \(A \rightarrow BC \)
A can never be duplicated

Not a duplication → Two different tuples just happen to have the same value for C
Functional Dependencies

Functional dependencies and keys:
• A key constraint is a specific form of a FD.
• E.g. if α is a superkey for R, then:
 \[\alpha \rightarrow R \]
• Similarly for candidate keys and primary keys.

Deriving FDs
• A set of FDs may imply other FDs
• e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$
• We will see a formal method for inferring this later

Definitions

1. A relation instance r satisfies a set of functional dependencies, F, if the FDs hold on the relation.

2. F holds on a relation schema R if no legal (allowable) relation instance of R violates it.

3. A functional dependency, $\alpha \rightarrow \beta$, is called trivial if:
 » α is a superset of β
 » e.g. Movieyear, length \rightarrow length

4. Given a set of functional dependencies, F, its closure, F^+, is all the FDs that are implied by FDs in F.
Approach

1. We will encode and list all our knowledge about the schema
 - Functional dependencies (FDs)
 - Also:
 - Multi-valued dependencies (briefly discuss later)
 - Join dependencies etc...

2. We will define a set of rules that the schema must follow to be considered good
 - “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

BCNF: Boyce-Codd Normal Form

A relation schema \(R \) is “in BCNF” if:
- Every functional dependency \(\alpha \rightarrow \beta \) that holds on it is **EITHER**:
 - 1. Trivial **OR**
 - 2. \(\alpha \) is a superkey of \(R \)

Why is BCNF good?
- Guarantees that there can be no redundancy because of a functional dependency
- Consider a relation \(r(A, B, C, D) \) with functional dependency
 - \(A \rightarrow B \) and two tuples: \((a1, b1, c1, d1)\), and \((a1, b1, c2, d2)\)
 - \(b1 \) is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - \(A \rightarrow B \) is neither trivial nor is \(A \) a superkey for the relation
BCNF and Redundancy

Why does redundancy arise?

» Given a FD, $\alpha \rightarrow \beta$, if α is repeated ($\beta - \alpha$) has to be repeated
1. If rule 1 is satisfied, ($\beta - \alpha$) is empty, so not a problem.
2. If rule 2 is satisfied, then α can’t be repeated, so this doesn’t happen either

Hence no redundancy because of FDs in BCNF

» Redundancy may exist because of other types of dependencies
 • Higher normal forms used for that (specifically, 4NF)
» Data may naturally have duplicated/redundant data
 • We can’t control that unless a FD or some other dependency is defined

Approach

1. We will encode and list all our knowledge about the schema:
 » Functional dependencies (FDs); Multi-valued dependencies; Join dependencies etc...

2. We will define rules the schema must follow to be “good”
 » “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
 » A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
 » Through lossless decomposition (splitting)
 » Or direct construction using the dependencies information
BCNF

What if the schema is not in BCNF?
» Decompose (split) the schema into two pieces.

From the previous example: split the schema into:
» \(r_1(A, B), \ r_2(A, C, D) \)
» The first schema is in BCNF, the second one may not be (and may require further decomposition)
» No repetition now: \(r_1 \) contains \((a_1, b_1)\), but \(b_1 \) will not be repeated

Careful: you want the decomposition to be lossless
» No information should be lost
 • The above decomposition is lossless
 » We will define this more formally later

Outline

Mechanisms and definitions to work with FDs
» Closures, candidate keys, canonical covers etc...
» Armstrong axioms

Decompositions
» Loss-less decompositions, Dependency-preserving decompositions

BCNF
» How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem
1. Closure

Given a set of functional dependencies, F, its closure, F^+, is all FDs that are implied by FDs in F.

» e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$

We can find F^+ by applying Armstrong’s Axioms:

» if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ (reflexivity)

» if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)

» if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)

These rules are

» sound (generate only functional dependencies that actually hold)

» complete (generate all functional dependencies that hold)

Additional rules (not Armstrong’s axioms)

If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ (union)

If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)

If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.
Example (only Armstrong’s axioms)

\[R = (A, B, C, G, H, I) \]
\[F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \} \]

Some members of \(F^* \)

- A \(\rightarrow \) H
 - by transitivity from \(A \rightarrow B \) and \(B \rightarrow H \)
- \(AG \rightarrow I \)
 - by augmenting \(A \rightarrow C \) with \(G \), to get \(AG \rightarrow CG \)
 - and then transitivity with \(CG \rightarrow I \)
- \(CG \rightarrow HI \)
 - by augmenting \(CG \rightarrow I \) to infer \(CG \rightarrow CGI \)
 - and augmenting of \(CG \rightarrow H \) to infer \(CGI \rightarrow HI \)
 - and then transitivity

2. Closure of an attribute set

Given a set of attributes \(\alpha \) and a set of FDs \(F \), closure of \(\alpha \) under \(F \) is the set of all attributes implied by \(\alpha \)

In other words, the largest \(\beta \) such that: \(\alpha \rightarrow \beta \)

Redefining super keys:

- The closure of a super key is the entire relation schema

Redefining candidate keys:

- It is a super key
- No subset of it is a super key
Computing the closure for α

Simple algorithm:

1. Start with $\beta = \alpha$.
2. Go over all functional dependencies, $\delta \rightarrow \gamma$, in F^+
3. If $\delta \subseteq \beta$, then
 Add γ to β
4. Repeat till β stops changing

Example

$R = (A, B, C, G, H, I)$
$F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \}$

$(AG)^*$?

» 1. $\beta = AG$
» 2. $\beta = ABCG$ (A → C and A → B)
» 3. $\beta = ABCGH$ (CG → H and CG ⊆ AGBC)
» 4. $\beta = ABCGHI$ (CG → I and CG ⊆ AGBCH)

Is (AG) a candidate key ?

1. It is a super key.
2. $(A^+) = ABCH$, $(G^+) = G$.

YES.
Uses of attribute set closures

Determining *superkeys and candidate keys*

Determining if $\alpha \rightarrow \beta$ is a valid FD
 » Does $\alpha+$ contain β?

Can be used to compute F^+

Functional Dependencies!
3. Extraneous Attributes

Consider F, and a functional dependency, $\alpha \rightarrow \beta$.

"Extraneous": Any attributes in α or β that can be safely removed? Without changing the constraints implied by F

σ is **extraneous** in α if:
1. σ is in α, and
2. F logically implies F' (show that F implies $(\alpha - \sigma) \rightarrow \beta$)
 - where $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - \sigma) \rightarrow \beta\}$, or
 1. let $\gamma = \alpha - \sigma$
 2. show γ^+ includes β under F

σ is **extraneous** in β if:
1. σ is in β, and
2. F' logically implies F, $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - \sigma)\}$
 - show α^+ includes σ under F'

3. Extraneous Attributes

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$, show C extra in $AB \rightarrow CD$

$\Rightarrow F' = \{A \rightarrow C, AB \rightarrow D\}$

- Using Armstrongs (show $AB \rightarrow C$ under F'):
 1. We know:
 - $AB \rightarrow D$ (F')
 - $ABC \rightarrow CD$ (aug)
 2. also:
 - $A \rightarrow C$ (F')
 - $AB \rightarrow BC$ (aug w/ B)
 - $AB \rightarrow ABC$ (aug w/ A)
 3. then:
 - $AB \rightarrow ABC \rightarrow CD$ (trans)
 done.

- Attribute closures (show $\alpha^+ \ includes C$ under F'):
 1. $(AB)^+ = AB$
 2. $= ABC$ ($A \rightarrow C$)
 done.