Outline

- Relational Algebra (6.1)
- E/R Model (7.2 - 7.4)
- E/R Diagrams (7.5)
- Reduction to Schema (7.6)
- Relational Database Design (7.7)
- Functional Dependencies (8.1 – 8.4)
- Normalization (8.5 – 8.7)

Closure of an attribute set

- Given a set of attributes α and a set of FDs F, \textit{closure of α under F} is the set of all attributes implied by α
- In other words, the largest β such that: $\alpha \rightarrow \beta$
- Redefining \textit{super keys}:
 - \textit{The closure of a super key is the entire relation schema}
- Redefining \textit{candidate keys}:
 - \textit{It is a super key}
 - \textit{No subset of it is a super key}
Computing the closure for α

Simple algorithm: start with $\beta = \alpha$:

1. Go over all functional dependencies, $\delta \rightarrow \gamma$, in F^+
2. If $\delta \subseteq \beta$, then
 add γ to β
3. Repeat till β stops changing

Example

- $R = \{A, B, C, G, H, I\}$
- $F = \{A \rightarrow B$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H\}$

- $(AG)^*$?
 - 1. $\beta = AG$
 - 2. $\beta = ABG$ $(A \rightarrow B$ and $A \subseteq AG)$
 - 3. $\beta = ABCG$ $(A \rightarrow C$ and $A \subseteq ABG)$
 - 4. $\beta = ABCGH$ $(CG \rightarrow H$ and $CG \subseteq ABCG)$
 - 5. $\beta = ABCGHI$ $(CG \rightarrow I$ and $CG \subseteq ABCGH)$

 - done: no need to iterate because have all attributes

- Is (AG) a candidate key?
 - 1. It is a super key.
 - 2. $(A+) = ABCH$, $(G+) = G.$
 - YES.
Uses of attribute set closures

- Determining superkeys and candidate keys

- Determining if $\alpha \rightarrow \beta$ is a valid FD
 - Does α^+ contain β?

- Can be used to compute F^+

Extraneous Attributes

Consider F, and a functional dependency, $\alpha \rightarrow \beta$.

- Any “extraneous” attribute in α or β can be safely removed

 Without changing the constraints implied by F

- σ is extraneous in α if:
 1. σ is in α, and
 * F logically implies F' (show that F implies $(\alpha - \sigma) \rightarrow \beta$
 * where $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - \sigma) \rightarrow \beta\}$ or
 2. or show $(\alpha - \sigma)^+ \text{ includes } \beta$ under F

- σ is extraneous in β if:
 1. σ is in β, and
 * F' logically implies F,
 * $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha \rightarrow (\beta - \sigma))\}$
 2. or show $\alpha^+ \text{ includes } \sigma$ under F'

σ is extraneous in α iff:

 $F \rightarrow F'$, or
 $(\alpha - \sigma)^+ \text{ includes } \beta$ under F

σ is extraneous in β iff:

 $F' \rightarrow F$, or
 $\alpha^+ \text{ includes } \sigma$ in F'
Example: Given $F = \{ A \rightarrow C, AB \rightarrow CD \}$, show C extra in $AB \rightarrow CD$

F' = \{ A \rightarrow C, AB \rightarrow D \}

Using Armstrong's:

- We know:
 - $AB \rightarrow D$ \((F') \)
 - $ABC \rightarrow CD$ \(\text{aug} \)
- also:
 - $A \rightarrow C$ \((F') \)
 - $AB \rightarrow BC$ \(\text{aug w/ B} \)
 - $AB \rightarrow ABC$ \(\text{aug w/ A} \)
- then:
 - $AB \rightarrow ABC \rightarrow CD$ \(\text{trans} \)

\(\sigma \text{ is extraneous in } \alpha \text{ iff:} \)
\(F \Rightarrow F', \text{ or} \)
\((\alpha - \sigma)^* \text{ includes } \beta \text{ under } F \)

\(\sigma \text{ is extraneous in } \beta \text{ iff:} \)
\(F' \Rightarrow F, \text{ or} \)
\(\alpha^* \text{ includes } \sigma \text{ in } F' \)

Attribute closures (show α^+ includes C under F'):

- $(AB)^+ = AB$
- $= ABC$ \((A \rightarrow C) \)

done.
Extraneous Attributes

Example: Given $F = \{A \rightarrow BE, B \rightarrow C, C \rightarrow D, AC \rightarrow DE\}$, remove extraneous attributes

- For left side of $AC \rightarrow DE$
 - A extraneous?
 - NO: $C^* = CD$, NOT include DE
 - C extraneous?
 - YES: $A^* = ABCDE$, includes DE
 - Now $F = A \rightarrow BE, B \rightarrow C, C \rightarrow D, A \rightarrow DE$

- For right side,
 - B extraneous in $A \rightarrow BE$?
 - $F' = A \rightarrow E, B \rightarrow C, C \rightarrow D, A \rightarrow DE$
 - NO: $A^* = ADE$, not include B.
 - E extraneous in $A \rightarrow BE$?
 - $F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE$
 - YES: $A^* = ABCDE$, includes E.
 - Now $F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE$
 - D extraneous in right side of $A \rightarrow DE$?
 - $F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E$
 - YES: $A^* = ABCDE$, so does include D
 - Now $F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E$

- σ is extraneous in α iff:
 - $F \rightarrow F'$, or
 - $(\alpha - \sigma)^+ \text{ includes } \beta \text{ under } F$

- σ is extraneous in β iff:
 - $F' \rightarrow F$, or
 - $\alpha^+ \text{ includes } \sigma \text{ in } F'$

Try starting at the other end...

- Given $F = \{A \rightarrow BE, B \rightarrow C, C \rightarrow D, AC \rightarrow DE\}$, remove extraneous attributes
 - E extra in $AC \rightarrow DE$?
 - $F' = A \rightarrow E, B \rightarrow C, C \rightarrow D, AC \rightarrow D$
 - Does $(AC)^+ \text{ include } E$? YES: $(AC)^+ = DBEC$
 - $F = A \rightarrow BE, B \rightarrow C, C \rightarrow D, AC \rightarrow D$
 - A extra in $AC \rightarrow D$?
 - $(C)^+ = CD$, includes D, so YES, A extraneous
 - $F = A \rightarrow BE, B \rightarrow C, C \rightarrow D$
 - $F = A \rightarrow BE, B \rightarrow C, C \rightarrow D$
 - B extra in BE?
 - $F' = F = A \rightarrow E, B \rightarrow C, C \rightarrow D$
 - Does $(A)^+ \text{ include } B$?
 - No
 - E extra in BE?
 - $F' = F = A \rightarrow B, B \rightarrow C, C \rightarrow D$
 - Does $(A)^+ \text{ include } E$?
 - No
 - $F = A \rightarrow BE, B \rightarrow C, C \rightarrow D$
 - Does $(A)^+ \text{ include } B$?
 - No
 - $F = A \rightarrow BE, B \rightarrow C, C \rightarrow D$
Extraneous Attributes

We got two answers:
- $F_1 = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E$
- $F_2 = A \rightarrow BE, B \rightarrow C, C \rightarrow D$

They are equivalent....
- F_2 imples F_1 and
- F_1 imples F_2

σ is extraneous in α iff:
- $F \rightarrow F'$, or
- $(\alpha - \sigma)^* \text{ includes } \beta \text{ under } F$

σ is extraneous in β iff:
- $F' \rightarrow F$, or
- $\alpha^* \text{ includes } \sigma \text{ in } F'$

Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique

In some (vague) sense, it is a minimal version of F

Create as follows:

repeat
 1. use union rule to merge right sides
 2. eliminate extraneous attributes

until F_c does not change
4. Canonical Cover

- $A \rightarrow B, A \rightarrow C, C \rightarrow D, AC \rightarrow BD$
- **Cover:**
 - $A \rightarrow B, A \rightarrow C, C \rightarrow D, AC \rightarrow BD$
 - $A \rightarrow BC, C \rightarrow D, AC \rightarrow BD$ (union)
 - a extra in ac \rightarrow bd?
 - **NO:** c* = cd, doesn't include “bd”
 - c extra in ac \rightarrow bd?
 - **YES:** a* = abcd, includes “bd”
 - $A \rightarrow BC, C \rightarrow D, A \rightarrow BD$
 - $A \rightarrow BCD, C \rightarrow D$ (union)
 - b extra in a \rightarrow bcd? ($F' = a \rightarrow cd, c \rightarrow d$)
 - **NO:** a* = cd in F', not include “b”
 - c extra in a \rightarrow bcd? ($F' = a \rightarrow bd, c \rightarrow d$)
 - **NO:** a* = bd in F', not include “c”
 - d extra in a \rightarrow bcd? ($F' = a \rightarrow bc, c \rightarrow d$)
 - **YES:** a* = bcd in F', includes “d”
 - $A \rightarrow BC, C \rightarrow D$

repeat
1. use union rule to merge right sides
2. eliminate extraneous attributes
until F_c does not change

- σ is extraneous in α iff:
 - $F \rightarrow F'$, or
 - $(\alpha - \sigma)^+ \text{ includes } \beta \text{ under } F$

- σ is extraneous in β iff:
 - $F' \rightarrow F$, or
 - $\alpha^+ \text{ includes } \sigma \text{ in } F'$

Outline

- **Mechanisms and definitions to work with FDs**
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- **Decompositions**
 - Loss-less decompositions, Dependency-preserving decompositions
- **BCNF**
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- **3NF:** Solves the above problem
- BCNF allows for redundancy
- **4NF:** Solves the above problem
Loss-less Decompositions

- **Definition:** Decomposing R into (R_1, R_2) is *lossless* if, for all legal instance of $r(R)$:

 $\quad r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$

 or

 (select * from (select R1 from r) natural join (select R2 from r))

- In other words, projecting on R_1 and R_2, and joining back, results in the relation you started with.

- This is true iff $R_1 \cap R_2$ defines a key for either R_1 or R_2:

 $\quad R_1 \cap R_2 \rightarrow R_1$

 or

 $\quad R_1 \cap R_2 \rightarrow R_2$

 in F^*.

Dependency-preserving Decompositions

- Is it easy to check if dependencies in F hold?
 - **Yes** if dependencies can be checked in the same table.

- Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C\}$

- 1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 - **Lossless?**

 - **Yes:** $AB \cap AC = A$, which is a key for R_1

 - But harder to check for $B \rightarrow C$ as the data is in multiple tables.

- 2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$
 - is both lossless and dependency-preserving.
Definition:
- Consider decomposition of R into R_1, ..., R_n.
- Let F_i be dependencies using just attributes in R_i.

The decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
 - 3NF: Solves the above problem
- BCNF allows for redundancy
 - 4NF: Solves the above problem
Normalization

BCNF

Recall that R is in BCNF if every FD, $\alpha \rightarrow \beta$, is either:

1. Trivial, or
2. α is a superkey of R

No redundancy

What if the schema is not in BCNF?

- Decompose (split) the schema into two pieces.
- Careful: you want the decomposition to be lossless
For all dependencies $\alpha \rightarrow \beta$ in F^+, check if α is a superkey.
- (attribute closure)

If not, then
- Choose a dependency in F^+ that breaks the BCNF rules, say $\alpha \rightarrow \beta$
- Create $R_1 = \alpha \beta$
- Create $R_2 = (R - (B \ - \alpha))$
- Note that: $R_1 \cap R_2 = \alpha$ and $\alpha \rightarrow \alpha\beta$, so:
 - α is a superkey of R_1
 - lossless decomposition

Repeat for R_1 and R_2
- Define F_i to be all dependencies in F^+ that contain only attributes in R_i

Note:

$(R - (B - \alpha)) == (R - \beta)$

if no extraneous attributions in FDs

We use $(R - \beta)$ in this course.

Achieving BCNF Schemas

Example 1

$R = (A, B, C)$
$F = \{A \rightarrow B, B \rightarrow C\}$
Candidate keys = \{A\}
BCNF? No. $B \rightarrow C$ violates.

$B \rightarrow C$

$R1 = (B, C)$
$F1 = \{B \rightarrow C\}$
Candidate keys = \{B\}
BCNF = true

$R2 = (A, B)$
$F2 = \{A \rightarrow B\}$
Candidate keys = \{A\}
BCNF = true

Dependency preservation ???
Yes

Lossless ???
Yes by construction