3. Extraneous Attributes

Consider F, and a functional dependency, $\alpha \rightarrow \beta$.

"Extraneous": Any attributes in α or β that can be safely removed? Without changing the constraints implied by F

σ is extraneous in α if:

- σ is in α, and
- F logically implies F' (show that F implies $(\alpha - \sigma) \rightarrow \beta$)
 - where $F' = (F - (\alpha \rightarrow \beta)) \cup ((\alpha - \sigma) \rightarrow \beta)$, or
1. let $\gamma = \alpha - \sigma$
2. show γ^* includes β under F

σ is extraneous in β if:

1. σ is in β, and
2. F' logically implies F,
 - $F' = (F - (\alpha \rightarrow \beta)) \cup (\alpha \rightarrow (\beta - \sigma))$
 - show α^* includes σ under F'

(\sigma is extraneous in α iff:
- $F \rightarrow F'$, or
- $(\alpha - \sigma)^*$ includes β under F

σ is extraneous in β iff:
- $F' \rightarrow F$, or
- α^* includes σ in F'

show α^* includes σ under F'
3. Extraneous Attributes

Example: Given \(F = \{A \rightarrow C, AB \rightarrow CD\} \), show \(C \) extraneous in \(AB \rightarrow CD \)

\(F' = \{A \rightarrow C, AB \rightarrow D\} \)

» Using Armstrong’s:

\(\text{show } F' \rightarrow F \)

- We know:
 - \(AB \rightarrow D \) (\(F' \))
 - \(ABC \rightarrow CD \) (aug)
- also:
 - \(A \rightarrow C \) (\(F' \))
 - \(AB \rightarrow BC \) (aug w/ \(B \))
 - \(AB \rightarrow ABC \) (aug w/ \(A \))
- then:
 - \(AB \rightarrow ABC \rightarrow CD \) (trans)
 - done.

» Attribute closures (show \(\alpha^+ \) includes \(C \) under \(F' \)):

- \((AB)^+ = AB \)
- \(= ABC \) (\(A \rightarrow C \))
 - done.

\(\sigma \) is extraneous in \(\alpha \) iff:

\(F \rightarrow F' \), or

\((\alpha - \sigma)^+ \) includes \(\beta \) under \(F \)

\(\sigma \) is extraneous in \(\beta \) iff:

\(F' \rightarrow F \), or

\(\alpha^+ \) includes \(\sigma \) in \(F' \)

3. Extraneous Attributes

Example: Given \(F = \{A \rightarrow BE, B \rightarrow C, C \rightarrow D, AC \rightarrow DE\} \), remove extraneous attributes

» For left side of \(AC \rightarrow DE \)

- A extraneous?
 - NO: \(C^+ = CD \), NOT include \(DE \)
- C extraneous?
 - YES: \(A^+ = ABCDE \), includes \(DE \)

\(F = A \rightarrow BE, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)

» For right side,

- B extraneous in \(A \rightarrow BE \)?
 - \(F' = A \rightarrow E, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - NO: \(A^+ = ADE \), not include \(B \).
- E extraneous in \(A \rightarrow BE \)?
 - \(F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - YES: \(A^+ = ABCDE \), includes \(E \).

\(F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)

» D extraneous in right side of \(A \rightarrow DE \)?

- \(F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E \)
 - YES: \(A^+ = ABCDE \), so does include \(D \)

\(F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E \)
4. Canonical Cover

A canonical cover for F is a set of dependencies F_c such that

- F logically implies all dependencies in F_c, and
- F_c logically implies all dependencies in F, and
- No functional dependency in F_c contains an extraneous attribute, and
- Each left side of functional dependency in F_c is unique

In some (vague) sense, it is a minimal version of F:

repeat

1. use union rule to merge right sides
2. eliminate extraneous attributes

until F_c does not change

4. Canonical Cover

A \rightarrow B, A \rightarrow C, C \rightarrow D, AC \rightarrow BD

Cover:
- $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$, $AC \rightarrow BD$
- $A \rightarrow BC$, $C \rightarrow D$, $AC \rightarrow BD$ (union)
 - a extra in ac \rightarrow bd?
 - NO: $c^* = cd$, doesn't include "bd"
 - c extra in ac \rightarrow bd?
 - YES: $a^* = abcd$, includes "bd"
- $A \rightarrow BC$, $C \rightarrow D$, $A \rightarrow BD$
- $A \rightarrow BCD$, $C \rightarrow D$ (union)
 - b extra in $a \rightarrow bcd$? ($F' = a \rightarrow cd, c \rightarrow d$)
 - NO: $a^* = cd$ in F', not include "b"
 - c extra in $a \rightarrow bcd$? ($F' = a \rightarrow bd, c \rightarrow d$)
 - NO: $a^* = bd$ in F', not include "c"
 - d extra in $a \rightarrow bcd$? ($F' = a \rightarrow bc, c \rightarrow d$)
 - YES: $a^* = bcd$ in F', includes "d"
- $A \rightarrow BC, C \rightarrow D$

repeat

1. use union rule to merge right sides
2. eliminate extraneous attributes

until F_c does not change

σ is extraneous in α iff:
- $F' \rightarrow F$, or
- $(α - σ)^*$ includes β under F

σ is extraneous in β iff:
- $F' \rightarrow F$, or
- $α^*$ includes σ in F'
Outline

Mechanisms and definitions to work with FDs
 » Closures, candidate keys, canonical covers etc...
 » Armstrong axioms

Decompositions
 » Loss-less decompositions, Dependency-preserving decompositions

BCNF
 » How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

Loss-less Decompositions

Definition: A decomposition of R into (R_1, R_2) is called lossless if, for all legal instance of $r(R)$:

$$r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

or

$$\text{(select all } R_1 \text{ join (select all } R_2))$$

or

$$\text{(select } * \text{ from (select } R_1 \text{ from } r \text{ natural join (select } R_2 \text{ from } r))}$$

In other words, projecting on R_1 and R_2, and joining back, results in the relation you started with

Rule: A decomposition of R into (R_1, R_2) is lossless, iff:

$$R_1 \cap R_2 \rightarrow R_1 \quad \text{or} \quad R_1 \cap R_2 \rightarrow R_2$$

in F.

or... $R_1 \cap R_2$ must be key for R_1 or R_2
Dependency-preserving Decompositions

Is it easy to check if dependencies in F hold?
- Yes if dependencies can be checked in the same table.

Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C\}$

1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 - Lossless?
 - Yes: $AB \cap AC = A$, which is a key for R_1
 - But harder to check for $B \rightarrow C$ as the data is in multiple tables.

2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$,
 - is both lossless and dependency-preserving

Dependency-preserving Decompositions

Definition:
- Consider decomposition of R into R_1, \ldots, R_n.
- Let F_i be dependencies using just attributes in R_i.

The decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$$
Outline

Mechanisms and definitions to work with FDs
» Closures, candidate keys, canonical covers etc...
» Armstrong axioms

Decompositions
» Loss-less decompositions, Dependency-preserving decompositions

BCNF
» How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

Normalization
BCNF

Recall that given a relation schema R, and a set of functional dependencies F, if every FD, $\alpha \rightarrow \beta$, is either:

1. Trivial
2. α is a superkey of R

Then, R is in BCNF (Boyce-Codd Normal Form)

No redundancy

What if the schema is not in BCNF?

» Decompose (split) the schema into two pieces.
» Careful: you want the decomposition to be lossless

Achieving BCNF Schemas

For all dependencies $\alpha \rightarrow \beta$ in $F+$, check if A is a superkey

» By using attribute closure

If not, then

» Choose a dependency in $F+$ that breaks the BCNF rules, say $\alpha \rightarrow \beta$
» Create $R_1 = \alpha\beta$
» Create $R_2 = R - \beta$
» Note that: $R_1 \cap R_2 = \alpha$ and $\alpha \rightarrow \alpha\beta (R_1)$, so this is lossless decomposition

Repeat for R_1, and R_2

» By defining F_1 to be all dependencies in F that contain only attributes in R_1
» Similarly F_2
Achieving BCNF Schemas

Example 1

R = (A, B, C)
F = {A → B, B → C}
Candidate keys = \{A\}

\[B \rightarrow C \]

R1 = (B, C)
F1 = \{B → C\}
Candidate keys = \{B\}
BCNF = true

R2 = (A, B)
F2 = \{A → B\}
Candidate keys = \{A\}
BCNF = true

Example 2

R = (A, B, C, D, E)
F = \{A → B, BC → D\}
Candidate keys = \{ACE\}
BCNF = Violated by \{A → B, BC → D\}

\[A \rightarrow B \]

R1 = (A, B)
F1 = \{A → B\}
Candidate keys = \{A\}
BCNF = true

R2 = (A, C, D, E)
F2 = \{}
Candidate keys = \{ACDE\}
BCNF = true

Dependency preservation ??
Yes

Dependency preservation ??
No: lost B→CD
Example 3

\[R = (A, B, C, D, E) \]
\[F = \{ A \rightarrow B, BC \rightarrow D \} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\}

\[R_1 = (BCD) \]
\[F_1 = \{ BC \rightarrow D \} \]
Candidate keys = \{BC\}
BCNF = true

\[R_2 = (A, B, C, E) \]
\[F_2 = \{ A \rightarrow B \} \]
Candidate keys = \{ACE\}
BCNF = false (A \rightarrow B)

\[A \rightarrow B \]

\[R_3 = (A, B) \]
\[F_3 = \{ A \rightarrow B \} \]
Candidate keys = \{A\}
BCNF = true

\[R_4 = (A, C, E) \]
\[F_4 = \{ \} \] \[\text{[only trivial]}\]
Candidate keys = \{ACE\}
BCNF = true

Dependency preservation ???
yes

Example 4

\[R = (A, B, C, D, E, H) \]
\[F = \{ A \rightarrow BC, E \rightarrow HA \} \]
Candidate keys = \{DE\}
BCNF = Violated by \{A \rightarrow BC\} and \{E \rightarrow HA\}

\[A \rightarrow BC \]

\[R_1 = (A, B, C) \]
\[F_1 = \{ A \rightarrow BC \} \]
Candidate keys = \{A\}
BCNF = true

\[R_2 = (A, D, E, H) \]
\[F_2 = \{ E \rightarrow HA \} \]
Candidate keys = \{DE\}
BCNF = false (E \rightarrow HA)

\[E \rightarrow HA \]

\[R_3 = (E, H, A) \]
\[F_3 = \{ E \rightarrow HA \} \]
Candidate keys = \{E\}
BCNF = true

\[R_4 = (ED) \]
\[F_4 = \{ \} \] \[\text{[only trivial]}\]
Candidate keys = \{DE\}
BCNF = true

Dependency preservation ???
We can check:
A \rightarrow BC (R1), E \rightarrow HA (R3),
Dependency-preserving decomposition
Exam

- Definitions / short answer
- write SQL equations (based on elections, assign 2)
- create E/R diagram, upload picture
 - reduce to relation schema
- relational algebra
 - reading, writing, translating to or from SQL

90 minutes, open book/computer, do your own work. You probably want to have the assignment2 VM up and ready to run some SQL queries.