3. Extraneous Attributes

- Example: Given \(F = \{ A \rightarrow C, AB \rightarrow CD \} \), show \(C \) extra in \(AB \rightarrow CD \)
 - \(F' = \{ A \rightarrow C, AB \rightarrow D \} \)

 - Using Armstrong’s :
 (show \(F' \rightarrow F \))
 - We know:
 - \(AB \rightarrow D \) \((F') \)
 - \(ABC \rightarrow CD \) \((\text{aug}) \)
 - also:
 - \(A \rightarrow C \) \((F') \)
 - \(AB \rightarrow BC \) \((\text{aug w/ B}) \)
 - \(AB \rightarrow ABC \) \((\text{aug w/ A}) \)
 - then:
 - \(AB \rightarrow ABC \rightarrow CD \) \(\text{(trans)} \)
 - done.

\[\sigma \text{ is extraneous in } \alpha \text{ iff:} \]
\[F \rightarrow F', \text{ or} \]
\[(\alpha - \sigma)^+ \text{ includes } \beta \text{ under } F \]

\[\sigma \text{ is extraneous in } \beta \text{ iff:} \]
\[F' \rightarrow F, \text{ or} \]
\[\alpha^+ \text{ includes } \sigma \text{ in } F' \]
3. Extraneous Attributes

- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$, show C extra in $AB \rightarrow CD$
 - $F' = \{A \rightarrow C, AB \rightarrow D\}$

 - Using Armstrong’s:
 (show $F' \rightarrow F$)
 - We know:
 - $AB \rightarrow D$ (F’)
 - $ABC \rightarrow CD$ (aug)
 - also:
 - $A \rightarrow C$ (F’)
 - $AB \rightarrow BC$ (aug w/ B)
 - $AB \rightarrow ABC$ (aug w/ A)
 - then:
 - $AB \rightarrow ABC \rightarrow CD$ (trans)
 done.

 - Attribute closures (show $\alpha^+ \text{ includes } C$ under F'):
 - $(AB)^+ = AB$
 - $= ABC \quad (A \rightarrow C)$
 done.

\[
\sigma \text{ is extraneous in } \alpha \text{ iff:} \\
F \rightarrow F', \text{ or} \\
(\alpha - \sigma)^+ \text{ includes } \beta \text{ under } F
\]

\[
\sigma \text{ is extraneous in } \beta \text{ iff:} \\
F' \rightarrow F, \text{ or} \\
\alpha^+ \text{ includes } \sigma \text{ in } F'
\]
4. Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique

- In some (vague) sense, it is a minimal version of F

- Create as follows:
 - **repeat**
 1. use union rule to merge right sides
 2. eliminate extraneous attributes
 - **until F_c does not change**

Example

- A → B, A → C, C → D, AC → BD

- **Cover:**
 1. A → BC, C → D, AC → BD
 2. A → BCD, C → D

- **σ is extraneous in α iff:**
 - $F \rightarrow F'$, or
 - $(\alpha - \sigma)^+ \text{ includes } \beta \text{ under } F$

- **σ is extraneous in β iff:**
 - $F' \rightarrow F$, or
 - $\alpha^+ \text{ includes } \sigma \text{ in } F'$

- $F_c = A \rightarrow BC, C \rightarrow D$
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions
 - Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

Loss-less Decompositions

- Definition: A decomposition of R into (R_1, R_2) is lossless if, for all legal instance of $r(R)$:

 $$
 r = \prod_{R_1} (r) \bowtie \prod_{R_2} (r) ((\text{select all } R_1) \text{ join } (\text{select all } R_2))
 $$

 or

 $$(\text{select } * \text{ from (select } R_1 \text{ from } r \text{) natural join (select } R_2 \text{ from } r))$$

- In other words, projecting on R_1 and R_2, and joining back, gives the original relation

- Rule: A decomposition of R into (R_1, R_2) is lossless, iff:

 $$
 R_1 \cap R_2 \rightarrow R_1 \text{ or } R_1 \cap R_2 \rightarrow R_2
 $$

 in F^+.

 $(R_1 \cap R_2)$ must be key for R_1 or R_2
Dependency-preserving Decompositions

- Is it easy to check if dependencies in F hold?
 - Yes if dependencies can be checked in the same table.
- Consider $R = (A, B, C)$, and $F = \{ A \rightarrow B, B \rightarrow C \}$
 - Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 - Lossless?
 - Yes: $AB \cap AC = A$, which is a key for R_1
 - But harder to check for $B \rightarrow C$ as the data is in multiple tables.
 - Decompose into $R_1 = (A, B)$, and $R_2 = (B, C)$,
 - is both lossless and dependency-preserving

Definition:
- Consider decomposition of R into R_1, \ldots, R_n.
- Let F_i be dependencies using just attributes in R_i.

- The decomposition is dependency preserving, if
 $$(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$$
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
 - 3NF: Solves the above problem
- BCNF allows for redundancy
 - 4NF: Solves the above problem

Normalization
Recall that R is in BCNF if every FD, $\alpha \rightarrow \beta$, is either:

1. Trivial, or
2. α is a superkey of R

No redundancy

What if the schema is not in BCNF?

- Decompose (split) the schema into two pieces.
- Careful: you want the decomposition to be lossless

Achieving BCNF Schemas

For all dependencies $\alpha \rightarrow \beta$ in F^+, check if α is a superkey

- (attribute closure)

If not, then

- Choose a dependency in F^+ that breaks the BCNF rules, say $\alpha \rightarrow \beta$
- Create $R_1 = \alpha\beta$
- Create $R_2 = R - (\beta - \alpha)$.
- Note that: $R_1 \cap R_2 = \alpha$ and $\alpha \rightarrow \alpha\beta$, so:
 - α is a superkey of R_1
 - lossless decomposition (lossless if intersection of two attribute sets is key for one)

Repeat for R_1 and R_2

- Define F_i to be all dependencies in F^+ that contain only attributes in R_i
Achieving BCNF Schemas

Example 1

\[R = (A, B, C) \]
\[F = \{A \rightarrow B, B \rightarrow C\} \]
Candidate keys = \{A\}
BCNF? No. \(B \rightarrow C \) violates.

\[B \rightarrow C \]

\[R_1 = (B, C) \]
\[F_1 = \{B \rightarrow C\} \]
Candidate keys = \{B\}
BCNF = true

\[R_2 = (A, B) \]
\[F_2 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

• Dependency-preserving?
 • yes

Example 2a

\[R = (A, B, C, D, E) \]
\[F = \{A \rightarrow B, BC \rightarrow D\} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\}

\[A \rightarrow B \]

\[R_1 = (A, B) \]
\[F_1 = \{A \rightarrow B\} \]
Candidate keys = \{A\}
BCNF = true

\[R_2 = (A, C, D, E) \]
\[F_2 = \{} \]
Candidate keys = \{ACDE\}
BCNF = true

• Dependency-preserving?
 • no: lost \(BC \rightarrow D \)
Example 2b

\[R = (A, B, C, D, E) \]
\[F = \{ A \rightarrow B, BC \rightarrow D \} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\}

\[BC \rightarrow D \]

\[R1 = (BCD) \]
\[F1 = \{ BC \rightarrow D \} \]
Candidate keys = \{BC\}
BCNF = true

\[R2 = (A, B, C, E) \]
\[F2 = \{ A \rightarrow B \} \]
Candidate keys = \{ACE\}
BCNF = false (A \rightarrow B)

\[A \rightarrow B \]

\[R3 = (A, B) \]
\[F3 = \{ A \rightarrow B \} \]
Candidate keys = \{A\}
BCNF = true

\[R4 = (A, C, E) \]
\[F4 = \{ \} \] [[only trivial]]\nCandidate keys = \{ACE\}
BCNF = true

Example 3

\[R = (A, B, C, D, E, H) \]
\[F = \{ A \rightarrow BC, E \rightarrow HA \} \]
Candidate keys = \{DE\}
BCNF = Violated by \{A \rightarrow BC\} and \{E \rightarrow HA\}

\[A \rightarrow BC \]

\[R1 = (A, B, C) \]
\[F1 = \{ A \rightarrow BC \} \]
Candidate keys = \{A\}
BCNF = true

\[R2 = (A, D, E, H) \]
\[F2 = \{ E \rightarrow HA \} \]
Candidate keys = \{DE\}
BCNF = false (E \rightarrow HA)

\[E \rightarrow HA \]

\[R3 = (E, H, A) \]
\[F3 = \{ E \rightarrow HA \} \]
Candidate keys = \{E\}
BCNF = true

\[R4 = (ED) \]
\[F4 = \{ \} \] [[only trivial]]\nCandidate keys = \{DE\}
BCNF = true

• Dependency-preserving?
 • yes