Mechanisms and definitions to work with FDs:
 » Closures, candidate keys, canonical covers etc...
 » Armstrong axioms

Decompositions:
 » Loss-less decompositions, Dependency-preserving decompositions

BCNF:
 » How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

BCNF may not preserve dependencies

\[R = \{J, K, L\} \]
\[F = \{JK \rightarrow L, L \rightarrow K\} \]

Two candidate keys = JK and JL
 » R is not in BCNF

Any decomposition of R will fail to preserve

\[JK \rightarrow L \]

This implies that testing for \(JK \rightarrow L \) requires a join
BCNF may not preserve dependencies

Not always possible to find a dependency-preserving decomposition that is in BCNF.

PTIME to determine if there exists a dependency-preserving decomposition in BCNF

» in size of F

NP-Hard to find one if it exists

Better results exist if F satisfies certain properties

Prime attributes

Definition: *Prime attributes*

An attribute that is contained in a candidate key for R

Example 1:

» $R = \{A, B, C, D, E, H\}$, $F = \{A \rightarrow BC, E \rightarrow HA\}$,
» Candidate keys = $\{ED\}$
» Prime attributes: D, E

Example 2:

» $R = \{J, K, L\}$, $F = \{JK \rightarrow L, L \rightarrow K\}$,
» Candidate keys = $\{JL, JK\}$
» Prime attributes: J, K, L

Observation/Intuition:

1. A key has no redundancy (is not repeated in a relation)
2. A *prime attribute* has limited redundancy
3NF to the rescue

R is in **3NF (3rd Normal Form)** if:

Given a relation schema \(R \) and a set of functional dependencies \(F \):

» if every FD, \(\alpha \rightarrow \beta \), is either:
 • Trivial, or
 • \(\alpha \) is a superkey of \(R \), or
 • All attributes in \((\beta – \alpha)\) are prime

Why is 3NF good?

» Lossless
» Preserves dependencies.
» Limited redundancy

3NF and Redundancy

Why does redundancy arise?

» Given a FD, \(\alpha \rightarrow \beta \), if \(\alpha \) is repeated \((\beta – \alpha)\) has to be repeated
 • If rule 1 is satisfied, \((\beta – \alpha)\) is empty, so not a problem.
 • If rule 2 is satisfied, \(\alpha \) can’t be repeated, so this doesn’t happen either
 • If not, rule 3 says \((\beta – \alpha)\) must contain only prime attributes
» This limits the redundancy somewhat.

3NF relaxes BCNF by allowing some (hopefully limited) redundancy

Why good?

» There always exists a dependency-preserving lossless decomposition in 3NF.
Decomposing into 3NF

let F_c be a canonical cover for F;
i := 0;
for each functional dependency $\alpha \rightarrow \beta$ in F_c
 \[i := i + 1;\]
 $R_i := \alpha \beta$;
if none of the schemas $R_j, j = 1, 2, \ldots, i$ contains a candidate key for R
 \[i := i + 1;\]
 $R_i :=$ any candidate key for R;
/* Optionally, remove redundant relations */
repeat
 if any schema R_j is contained in another schema R_k
 then
 /* Delete R_j */
 $R_j := R_i$;
 \[i := i - 1;\]
 until no more R_js can be deleted
return (R_1, R_2, \ldots, R_i)

Figure 8.12 Dependency-preserving, lossless decomposition into 3NF.

3NF Example

$(R) = (A, B, C, D, E, F, G, H)$

Function Dependencies
 » $F = \{A \rightarrow CGH, AD \rightarrow C, DE \rightarrow F, G \rightarrow H\}$
 • $R_1 = \{ACGH\}, R_2 = \{ADC\}, R_3 = \{DEF\}, R_4 = \{GH\}, R_5 = \{ABDE\}$
 • $R_1 = \{ACG\}, R_2 = \{ADC\}, R_3 = \{DEF\}, R_4 = \{GH\}, R_5 = \{ABDE\}$
 » Somewhat better if start from canonical cover: $F' =$
 • $\{A \rightarrow CGH, AD \rightarrow C, DE \rightarrow F, G \rightarrow H\}$
 • $\{A \rightarrow CGH, AD \rightarrow C, DE \rightarrow F, G \rightarrow H\}$
 \- H is extra in $A \rightarrow CGH$
 \- D extra in $AD \rightarrow C$, merge $A \rightarrow C$ into $A \rightarrow CG$
 • $\{A \rightarrow CG, DE \rightarrow F, G \rightarrow H\}$
 • $R_1 = \{ACG\}, R_2 = \{DEF\}, R_3 = \{GH\}$
 • $R_1 = \{ACG\}, R_2 = \{DEF\}, R_3 = \{GH\}, R_4 = \{ABDE\}$
 » Lossless: Each (except R_4) has a single FD that is a key
 » Preserves dependencies: each carried through a single subrelation
Outline

Mechanisms and definitions to work with FDs
» Closures, candidate keys, canonical covers etc...
» Armstrong axioms

Decompositions
» Loss-less decompositions, Dependency-preserving decompositions

BCNF
» How to achieve a BCNF schema

BCNF may not preserve dependencies

3NF: Solves the above problem

BCNF allows for redundancy

4NF: Solves the above problem

BCNF and redundancy

<table>
<thead>
<tr>
<th>MovieTitle</th>
<th>MovieYear</th>
<th>StarName</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>Harrison Ford</td>
<td>Address 1, LA</td>
</tr>
<tr>
<td>Star wars</td>
<td>1977</td>
<td>Harrison Ford</td>
<td>Address 2, FL</td>
</tr>
<tr>
<td>Indiana Jones</td>
<td>198x</td>
<td>Harrison Ford</td>
<td>Address 1, LA</td>
</tr>
<tr>
<td>Indiana Jones</td>
<td>198x</td>
<td>Harrison Ford</td>
<td>Address 2, FL</td>
</tr>
<tr>
<td>Witness</td>
<td>19xx</td>
<td>Harrison Ford</td>
<td>Address 1, LA</td>
</tr>
<tr>
<td>Witness</td>
<td>19xx</td>
<td>Harrison Ford</td>
<td>Address 2, FL</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Lot of redundancy

FDs ? No non-trivial FDs.

So the schema is trivially in BCNF (and 3NF)

What went wrong ?
Multi-valued Dependencies

The redundancy is because of *multi-valued dependencies*

Denoted:

» starname \(\rightarrow\) address

» starname \(\rightarrow\) movietitle, movieyear

Does not happen if schema is constructed from an E/R diagram

Functional dependencies are a special case of multi-valued dependencies

Multi-valued Dependencies

- FDs *rule out* certain tuples
- MVDs *require* tuples of certain form

Read up if interested.

Not on test.
Comparing the normal forms

<table>
<thead>
<tr>
<th></th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminates redundancy</td>
<td>Mostly</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>because of FD's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliminates redundancy</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>because of MVD's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preserves FDs</td>
<td>Yes.</td>
<td>Maybe</td>
<td>Maybe</td>
</tr>
<tr>
<td>Preserves MVDs</td>
<td>Maybe</td>
<td>Maybe</td>
<td>Maybe</td>
</tr>
</tbody>
</table>

4NF is typically desired and achieved.

A good E/R diagram won’t generate non-4NF relations at all
Choice between 3NF and BCNF is up to the designer

Database design process

So three ways to come up with a schema:

1. Using E/R diagram
 » If good, then little normalization is needed
 » Tends not to generate 4NF designs

2. A universal relation R that contains all attributes.
 » Called universal relation approach
 » Note that MVDs will be needed in this case

3. An ad hoc schema that is then normalized
 » MVDs may be needed in this case
Recap

What about 1st and 2nd normal forms?

1NF:
» Essentially says that no set-valued attributes allowed
» Formally, a domain is called \textit{atomic} if the elements of the domain are considered indivisible
» A schema is in 1NF if the domains of all attributes are atomic
» We assumed 1NF throughout the discussion
 • Non 1NF is just not a good idea

2NF:
» Mainly historic interest
» See Exercise 7.15 in the book

Recap

We would like our relation schemas to:
» \textit{Not allow potential redundancy} because of FDs or MVDs
» Be \textit{dependency-preserving}:
 • Make it easy to check for dependencies
 • Since they are a form of integrity constraints

Functional Dependencies/Multi-valued Dependencies
» Domain knowledge about the data properties

Normal forms
» Defines the rules that schemas must follow
» 4NF is preferred, but 3NF is sometimes used instead
Recap

Denormalization
» After doing the normalization, we may have too many tables
» We may *denormalize* for performance reasons
 • Too many tables → too many joins during queries
» A better option might be to use *views* instead
 • If a specific set of tables is joined often, create a view on the join

More advanced normal forms
» project-join normal form (PJNF or 5NF)
» domain-key normal form
» Rarely used in practice

Exam

• Definitions / short answer

• write SQL equations (based on elections, assign 2)

• create E/R diagram, upload picture
 • reduce to relation schema

• relational algebra
 • reading, writing, translating to or from SQL

90 minutes, open book/computer, do your own work. You probably want to have the assignment2 VM up and ready to run some SQL queries.
Big Data Processing with MapReduce and Spark

Outline

The big data problem

MapReduce model

Limitations of MapReduce

Spark model
The Big Data Problem

Data is growing faster than computation speeds

Growing data sources
 » Web, mobile, scientific, ...

Cheap storage
 » Doubling every 18 months

Stalling CPU speeds
 » Even multicores not enough

Examples

Facebook’s daily logs: 60 TB
1000 genomes project: 200 TB
Google web index: 10+ PB

Cost of 1 TB of disk: $50
Time to read 1 TB from disk: 6 hours (50 MB/s)
The Big Data Problem

Single machine can no longer process or even store all the data!

Only solution is to distribute over large clusters

Google Datacenter

How do we program this thing?
Traditional Network Programming

Message-passing between nodes

Really hard to do at scale:

» How to split problem across nodes?
 • Must consider network, data locality

» How to deal with failures?
 • 1 server fails every 3 years => 10K nodes see 10 faults/day

» Even worse: stragglers (node is not failed, but slow)

Almost nobody does message passing!

Data-Parallel Models

Restrict the programming interface so that the system can do more automatically

“Here’s an operation, run it on all of the data”

» I don’t care *where* it runs (you schedule that)

» In fact, feel free to run it *twice* on different nodes

Biggest example: MapReduce

» (Hadoop is open source copy)
MapReduce

First widely popular programming model for data-intensive apps on clusters

Published by Google in 2004
 » Processes 20 PB of data / day

Popularized by open-source Hadoop project
 » 40,000 nodes at Yahoo!, 70 PB at Facebook

Outline

The big data problem

MapReduce model

Limitations of MapReduce

Spark model
MapReduce Programming Model

Data type: key-value records

Map function:

\[(K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter})\]

Reduce function:

\[(K_{inter}, \text{list}(V_{inter})) \rightarrow \text{list}(K_{out}, V_{out})\]

Example: Word Count

```python
def mapper(line):
    for word in line.split():
        output(word, 1)

def reducer(key, values):
    output(key, sum(values))
```
MapReduce Execution

Automatically split work into many small *tasks*

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish
Fault Recovery

1. If a task crashes:
 » Retry on another node
 • OK for a map because it had no dependencies
 • OK for reduce because map outputs are on disk
 » If the same task repeatedly fails, end the job

Requires user code to be deterministic

Fault Recovery

2. If a node crashes:
 » Relaunch its current tasks on other nodes
 » Relaunch any maps the node previously ran
 • Necessary because their output files were lost along with the crashed node
Fault Recovery

3. If a task is going slowly (straggler):
 » Launch second copy of task on another node
 » Take the output of whichever copy finishes first, and kill the other one

Example Applications
1. Search

Input: (lineNumber, line) records

Output: lines matching a given pattern

Map:

```python
if(line matches pattern):
    output(line)
```

Reduce: identity function

— Alternative: no reducer (map-only job)

2. Sort

Input: (key, value) records

Output: same records, sorted by key

Map: identity function

Reduce: identify function
3. Inverted Index

Input: (filename, text) records

Output: list of files containing each word

Map:

```python
foreach word in text.split():
    output(word, filename)
```

Reduce:

```python
def reduce(word, filenames):
    output(word, unique(filenames))
```

Inverted Index Example

<table>
<thead>
<tr>
<th>Word</th>
<th>Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>afraid</td>
<td>(12th.txt)</td>
</tr>
<tr>
<td>be</td>
<td>(12th.txt, hamlet.txt)</td>
</tr>
<tr>
<td>greatness</td>
<td>(12th.txt)</td>
</tr>
<tr>
<td>not</td>
<td>(12th.txt, hamlet.txt)</td>
</tr>
<tr>
<td>of</td>
<td>(12th.txt)</td>
</tr>
<tr>
<td>or</td>
<td>(hamlet.txt)</td>
</tr>
<tr>
<td>to</td>
<td>(hamlet.txt)</td>
</tr>
<tr>
<td>not to be</td>
<td>hamlet.txt</td>
</tr>
<tr>
<td>be or</td>
<td>hamlet.txt</td>
</tr>
<tr>
<td>not</td>
<td>hamlet.txt</td>
</tr>
<tr>
<td>afraid</td>
<td>12th.txt</td>
</tr>
<tr>
<td>of</td>
<td>12th.txt</td>
</tr>
<tr>
<td>greatness</td>
<td>12th.txt</td>
</tr>
</tbody>
</table>
Summary

By providing a data-parallel model, MapReduce greatly simplified cluster programming:

» Automatic division of job into tasks
» Locality-aware scheduling
» Load balancing
» Recovery from failures & stragglers

But... the story doesn’t end here!

Outline

The big data problem

MapReduce model

Limitations of MapReduce

Spark model
When an Abstraction is Useful...

People want to compose it!

Most real applications require multiple MR steps

- Google indexing pipeline: 21 steps
- Analytics queries (e.g. sessions, top K): 2-5 steps
- Iterative algorithms (e.g. PageRank): 10’s of steps

Problems: programmability & performance

Programmability

Multi-step jobs create spaghetti code

- 21 MR steps -> 21 mapper and reducer classes

Lots of boilerplate wrapper code per step

API doesn’t provide type safety
Performance

MR only provides one pass of computation
 » Must write out data to file system in-between

Expensive for apps that need to reuse data
 » Multi-step algorithms (e.g. PageRank)
 » Interactive data mining (many queries on same data)

Users often hand-optimize by merging steps

Outline

The big data problem
MapReduce model
Limitations of MapReduce
Spark model
Spark

Aims to address both problems

Programmability: clean, functional API
 » Parallel transformations on collections
 » 5-10x less code than MR
 » Available in Scala, Java and Python

Performance:
 » In-memory computing primitives
 » Automatic optimization across operators

Spark Programmability

Google MapReduce WordCount:

```cpp
#include "mapreduce/mapreduce.h"

// User's map function
class SplitWords: public Mapper {
  virtual void Map(const MapInput& input) {
    const string6 text = input.value();
    const int n = text.size();
    for (int i = 0; i < n; i++) {
      // Skip past leading whitespace
      while (i < n && isspace(text[i])) i++;
      // Find word end
      int start = i;
      while (i < n && !isspace(text[i])) i++;
      if (start < i) Emit(text.substr(start, i - start), "1");
    }
  }

  REGISTER_MAPPER(SplitWords);
};

// User's reduce function
class Sum: public Reducer {
  virtual void Reduce(ReduceInput* input) {
    int64 value = 0;
    while (!input->done()) {
      value += StringToInt(input->value());
      input->NextValue();
    }
    // Emit sum for input->key()
    Emit(IntToString(value));
  }

  REGISTER_REDDUCE(Sum);
};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {
  ParseCommandLineFlags(argc, argv);
  MapReduceSpecification spec;
  for (int i = 1; i < argc; i++) {
    MapReduceInput* in = spec.add_input();
    in->set_format("text");
    in->set_filepattern(argv[i]);
    in->set_mapper_class("SplitWords");
  }

  // Specify the output files
  MapReduceOutput* out = spec.output();
  out->set_filebase("gfs/test/freq");
  out->set_num_tasks(100);
  out->set_format("text");
  out->set_reducer_class("Sum");
  out->set_combiner_class("Sum");

  // Do partial sums within map
  out->set_combiner_class("Sum");

  // Tuning parameters
  spec.set_machines(2000);
  spec.set_map_megabytes(100);
  spec.set_reduce_megabytes(100);

  // Now run it
  MapReduceResult result;
  if (!MapReduce(spec, &result)) abort();
  return 0;
}
Spark Programmability

Spark WordCount:

```scala
val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.save("out.txt")
```

Spark Performance

Iterative algorithms:

![Bar chart for K-means Clustering](chart1)

- **K-means Clustering**
  - Hadoop MR: 121 sec
  - Spark: 4.1 sec

![Bar chart for Logistic Regression](chart2)

- **Logistic Regression**
  - Hadoop MR: 80 sec
  - Spark: 0.96 sec
Spark Concepts

Resilient distributed datasets (RDDs)
» Immutable, partitioned collections of objects
» May be cached in memory for fast reuse

Operations on RDDs
» Transformations (build RDDs), actions (compute results)

Restricted shared variables
» Broadcast, accumulators

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split("\t")(2))
messages.cache()

messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count
...
```

Result: search 1TB data in 5-7 sec (vs 170 sec for on-disk data)
**Example: Logistic Regression**

Goal: find best line separating two sets of points

```
val data = spark.textFile(...).map(readPoint).cache()
var w = Vector.random(D)
for (i <- 1 to ITERATIONS) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
 w -= gradient
}
println("Final w: " + w)
```
Logistic Regression Performance

- First iteration: 80 s
- Further iterations: 1 s
- 110 s / iteration

Other RDD Operations

<table>
<thead>
<tr>
<th>Transformations (define a new RDD)</th>
<th>map</th>
<th>filter</th>
<th>sample</th>
<th>groupByKey</th>
<th>reduceByKey</th>
<th>cogroup</th>
<th>flatMap</th>
<th>union</th>
<th>join</th>
<th>cross</th>
<th>mapValues</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions (output a result)</td>
<td>collect</td>
<td>reduce</td>
<td>take</td>
<td>fold</td>
<td>count</td>
<td>saveAsTextFile</td>
<td>saveAsHadoopFile</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spark in Java and Python

```java
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
 Boolean call(String s) {
 return s.contains("error");
 }
}).count();
```

```python
lines = sc.textFile(...)
lines.filter(lambda x: "error" in x).count()
```

Accumulators

Apart from broadcast, another common sharing pattern is aggregation

» Add up multiple statistics about data
» Count various events for debugging

Spark’s reduce operation does aggregation, but accumulators are another nice way to express it
Usage

val badRecords = sc.accumulator(0)
val badBytes = sc.accumulator(0.0)

records.filter(r => {
  if (isBad(r)) {
    badRecords += 1
    badBytes += r.size
  }
} else {
  true
}
}).save(...)

printf("Total bad records: %d, avg size: %f\n",
  badRecords.value, badBytes.value / badRecords.value)

Accumulator Rules

Create with SparkContext.accumulator(initialVal)

“Add” to the value with += inside tasks
  » Each task’s effect only counted once

Access with .value, but only on master
  » Exception if you try it on workers

Retains efficiency and fault tolerance!