Query Processing

continued...

Merge-Join (Sort-merge join)

- Pre-condition:
 - equi-/natural joins
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this
- Called "sort-merge join" sometimes

```
SELECT *
FROM r, s
WHERE r.a1 = s.a1
```

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list
 - Depending on the join condition
3. Repeat
Merge-Join (Sort-merge join)

- Cost:
 - If the relations sorted, then just
 - $b_r + b_s$ block transfers, some seeks depending on memory size
 - What if not sorted?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join
- Observation:
 - The final join result will also be sorted on a_1
 - This might make further operations easier to do
 - E.g. duplicate elimination

Query Processing

- Overview
- Selection operation
- Join operators
- Sorting
- Other operators
- Putting it all together…
Sorting

- Commonly required for many operations
 - Duplicate elimination, group by’s, sort-merge join
 - Queries may have ASC or DSC in the query
- One option:
 - Read the lowest level of B+-tree
 - May be enough in many cases
 - But if relation not sorted, too many random accesses
- If relation small enough…
 - Read in memory, use quicksort (qsort() in C)
- What if relation too large to fit in memory?
 - External sort-merge

External sort-merge

- Divide and Conquer !!
- Let M denote the memory size (in blocks)
- Phase 1:
 - Read first M blocks of relation, sort, and write it to disk
 - Read the next M blocks, sort, and write to disk …
 - Say we have to do this “N” times
 - Result: N sorted runs of size M blocks each
- Phase 2:
 - Merge the N runs (N-way merge)
 - Can do it in one shot if $N < M$
External sort-merge

- **Phase 1:**
 - Create *sorted runs of size* M *each*
 - Result: N sorted runs of size M blocks each

- **Phase 2:**
 - Merge the N runs (*N-way merge*)
 - Can do it in one shot if $N < M$

- **What if $N > M$?**
 - Do it recursively
 - Not expected to happen
 - If $M = 1000$, can compare 1000 runs
 - (4KB blocks): can sort: 1000 runs, each of 1000 blocks, each of 4k bytes = 4GB of data

Example: External Sorting Using Sort-Merge ($N \geq M$)

<table>
<thead>
<tr>
<th>Initial Relation</th>
<th>Create Runs</th>
<th>Merge Pass-1</th>
<th>Merge Pass-2</th>
<th>Sorted Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 19</td>
<td>a 19</td>
<td>a 14</td>
<td>a 14</td>
<td>M = 3</td>
</tr>
<tr>
<td>g 24</td>
<td>g 24</td>
<td>g 24</td>
<td>g 24</td>
<td>N = 12</td>
</tr>
<tr>
<td>d 31</td>
<td>d 31</td>
<td>d 31</td>
<td>d 31</td>
<td></td>
</tr>
<tr>
<td>c 33</td>
<td>c 33</td>
<td>c 33</td>
<td>c 33</td>
<td></td>
</tr>
<tr>
<td>b 14</td>
<td>b 14</td>
<td>b 14</td>
<td>b 14</td>
<td></td>
</tr>
<tr>
<td>e 16</td>
<td>e 16</td>
<td>e 16</td>
<td>e 16</td>
<td></td>
</tr>
<tr>
<td>r 16</td>
<td>r 16</td>
<td>r 16</td>
<td>r 16</td>
<td></td>
</tr>
<tr>
<td>d 21</td>
<td>d 21</td>
<td>d 21</td>
<td>d 21</td>
<td></td>
</tr>
<tr>
<td>m 3</td>
<td>m 3</td>
<td>m 3</td>
<td>m 3</td>
<td></td>
</tr>
<tr>
<td>p 2</td>
<td>p 2</td>
<td>p 2</td>
<td>p 2</td>
<td></td>
</tr>
<tr>
<td>d 7</td>
<td>d 7</td>
<td>d 7</td>
<td>d 7</td>
<td></td>
</tr>
<tr>
<td>a 14</td>
<td>a 14</td>
<td>a 14</td>
<td>a 14</td>
<td></td>
</tr>
</tbody>
</table>
External Merge Sort (Cont.)

- **Cost analysis:**
 - Total number of merge passes required: $\lceil \log_{M-1}(b_r/M) \rceil$.
 - Disk for initial run creation as well as in each pass is $2b_r$
 - for final pass, we don’t count write cost
 - output may be pipelined (sent via memory to parent operation)

Thus total number of disk transfers for external sorting:

$$2b_r \lceil \log_{M-1}(b_r/M) \rceil - b_r + 2b_r = b_r (2 \lceil \log_{M-1}(b_r/M) \rceil + 1) = 12 \times (2 \times 2 + 1) = 60$$

Seeks:

$$2 \lceil b_r/M \rceil + 2b_r \lceil \log_{M-1}(b_r/M) \rceil - b_r = 2 \lceil b_r/M \rceil + b_r (2 \lceil \log_{M-1}(b_r/M) \rceil - 1) = 8 + 12(2 \times 2 - 1) = 44$$

#blocks read at a time, b_o, ignored here

External Merge Sort (Cont.)

- What if $M = 4$?
 - merge in one round (3 runs, 1 buffer for output).
 - disk transfers: $= b_r (2 \lceil \log_{M-1}(b_r/M) \rceil + 1) = 12 \times (2 \times 1 + 1) = 36$
 - seeks: $= 2 \lceil b_r/M \rceil + b_r (2 \lceil \log_{M-1}(b_r/M) \rceil - 1) = 6 + 12(2 - 1) = 18$
So far…

- **Block Nested-loops join**
 - Can always be applied irrespective of the join condition
- **Index Nested-loops join**
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - `select balance from customer, accounts where customer.name = "j. s." and customer.SSN = accounts.SSN`
- **Merge joins**
 - Join algorithm of choice when the relations are large
 - Sorted results commonly desired at the output
 - To answer group by queries, for duplicate elimination, because of ASC/DSC

Hash Join

- **Case 1: Smaller relation (S) fits in memory**
- Nested-loops join:

  ```
  for each tuple r in R
    for each tuple s in S
      check if r.a = s.a
  ```

 - Cost: \(b_r + b_s \) transfers, 2 seeks
 - The inner loop is not exactly cheap (high CPU cost)

- Hash join:

  ```
  read S in memory and build a hash index on it
  for each tuple r in R
    use the hash index on S to find tuples such that S.a = r.a
  ```
Hash Join

- **Case 1:** Smaller relation \((S)\) fits in memory
 - Hash join:
 - read \(S\) in memory and build a hash index on it
 - for each tuple \(r\) in \(R\)
 - use the hash index on \(S\) to find tuples such that \(S.a = r.a\)
 - Cost: \(b_r + b_s\) transfers, 2 seeks (unchanged)
 - Why good?
 - CPU cost is much better (even though we don’t care about it too much)
 - Much better than nested-loops join when \(S\) doesn’t fit in memory (next)

Hash Join

- **Case 2:** Smaller relation \((S)\) doesn’t fit in memory
 - Basic idea:
 - partition tuples of each relation into sets that have same value on join attributes
 - must be equi-/natural join
 - Phase 1:
 - Read \(R\) block by block and partition it using a hash function: \(h_1(a)\)
 - Create one partition for each possible value of \(h_1(a)\) (\(n_r\) partitions)
 - Write the partitions to disk
 - \(R\) gets partitioned into \(R_1, R_2, \ldots, R_k\)
 - Similarly, read and partition \(S\), and write partitions \(S_1, S_2, \ldots, S_k\) to disk
 - Only requirements:
 - Room for a single input block and one output block for each hash value
 - Each \(S\) partition fits in memory
Hash Join

- **Case 2: Smaller relation \((S)\) doesn’t fit in memory**
- **Two “phases”**
- **Phase 2:**
 - Read \(S_i\) into memory, and build a hash index on it (\(S_i\) fits in memory)
 - Using a different hash function from the partition hash: \(h_2(a)\)
 - Read \(R_i\) block by block, and use the hash index to find matches.
 - Repeat for all \(i\).

Hash Join

\[n_h = 5 \]
num hash values
Hash Join

- **Case 2: Smaller relation \(S \) doesn’t fit in memory**
- Two “phases”:
 - **Phase 1:**
 - Partition the relations using one hash function, \(h_1(a) \)
 - **Phase 2:**
 - Read \(S \) into memory, and build a hash index on it (\(S \) fits in memory)
 - Read \(R \) block by block, and use the hash index to find matches.
- **Cost**?
 - \(3(b_r + b_s) \) block transfers
 - \(R \) or \(S \) might have partially full block to be read and written (ignored)
 - \(+ 2\left(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil \right) \) seeks (seek count unclear)
 - Where \(b_b \) is the size of each input buffer (p. 560)
 - Much better than Nested-loops join under the same conditions

Hash Join: Issues

- **How to guarantee that each partition of \(S \) fits in memory?**
 - Say \(S = 10,000 \) blocks, Memory = \(M = 100 \) blocks
 - Use a hash function that hashes to 100 different values?
 - Eg. \(h1(a) = a \% 100 \)?
 - Problem: Impossible to guarantee uniform split
 - Some partitions will be larger than 100 blocks, some will be smaller
 - Use a hash function that hashes to \(100f \) different values
 - \(f \) is called fudge factor, typically around 1.2
 - So we may consider \(h1(a) = a \% 120 \).
 - This is okay IF \(a \) is uniformly distributed
 - **Why can’t we just set \(h_n \) to 200?**
 - need to have a per-value output block in mem during build phase
Hash Join: Issues

- Memory required?
 - Say $S = 10000$ blocks, Memory = $M = 100$ blocks
 - So 120 different partitions
 - During phase 1:
 - Need 1 block for storing R
 - Need 120 blocks for storing each partition of R
 - So must have at least 121 blocks of memory
 - We only have 100 blocks

- Typically need $\sqrt{|S| \times f}$ blocks of memory
 - So if S is 10000 blocks, and $f = 1.2$, need 110 blocks of memory
 - Need:
 - $M > n_s + 1$
 - each partition of S to fit in $M-1$ (why not R?)
 - space for hash build on $h_2()$ (usually ignored)

- Example:
 - $h_n = 109$, average size = $10,000/109 = 91.7$

Hash Join: If S_i Too Large

- Avoidance
 - Fudge factor

- Resolution
 - partition w/ a third hash $h_3()$
 - also partition R_i
 - go through each sub-partition

 - this approach could be used for every partition
Merge-Join (Sort-merge join)

- **Pre-condition:**
 - equi-/natural joins
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this
- **Called “sort-merge join” sometimes**

\[
\text{select *}
\]
\[
\text{from } r, s
\]
\[
\text{where } r.a1 = s.a1
\]

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list - Depending on the join condition
3. Repeat

Cost:
- If the relations sorted, then just
 - \(b_r + b_s\) block transfers, some seeks depending on memory size
- What if not sorted?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join
- **Observation:**
 - The final join result will also be sorted on \(a1\)
 - This might make further operations easier to do
 - E.g. duplicate elimination
Joins: Summary

- **Block Nested-loops join**
 - Can always be applied irrespective of the join condition
- **Index Nested-loops join**
 - Only applies if an appropriate index exists
- **Hash joins – only for equi-joins**
 - Join algorithm of choice when the relations are large
- **Sort-merge join**
 - Very commonly used – especially since relations are typically sorted
 - Sorted results commonly desired at the output
 - To answer group by queries, for duplicate elimination, because of ASC/DSC

Query Processing

- **Overview**
- **Selection operation**
- **Join operators**
- **Other operators**
- **Putting it all together…**
- **Sorting**
Group By and Aggregation

\[
\text{select } a, \text{ count}(b) \\
\text{from } R \\
\text{group by } a;
\]

- **Hash-based algorithm:**
 - Create a hash table on \(a \), and keep the \text{count}(b) so far
 - Read \(R \) tuples one by one
 - For a new \(R \) tuple, “r”
 - Check if \(r.a \) exists in the hash table
 - If yes, increment the count
 - If not, insert a new value

- **Sort-based algorithm:**
 - Sort \(R \) on \(a \)
 - Now all tuples in a single group are contiguous
 - Read tuples of \(R \) (sorted) one by one and compute the aggregates
Group By and Aggregation

\[\text{select } a, \operatorname{AGGR}(b) \text{ from } R \text{ group by } a; \]

- \text{sum(), count(), min(), max(): only need to maintain one value per group}
 - “distributive”
- \text{average(): need to maintain the “sum” and “count” per group}
 - “algebraic”
- \text{stddev(): algebraic, but need to maintain some more state}
- \text{median(): can do efficiently with sort, but need two passes}
 - “holistic”
 - First to find the number of tuples in each group, and then to find the median tuple in each group
- \text{count(distinct b)}
 - must do duplicate elimination before the count

Duplicate Elimination

\[\text{select distinct } a \text{ from } R; \]

- Best done using sorting – Can also be done using hashing
- Steps:
 - Sort the relation \(R \)
 - Read tuples of \(R \) in sorted order
 - \(\text{prev} = \text{null}; \)
 - for each tuple \(r \) in \(R \) (sorted)
 - if \(r \neq \text{prev} \) then
 - Output \(r \)
 - \(\text{prev} = r \)
 - else
 - Skip \(r \)
Set operations

\[(select * from R) \text{ union } (select * from S) ;\]
\[(select * from R) \text{ intersect } (select * from S) ;\]
\[(select * from R) \text{ union all } (select * from S) ;\]
\[(select * from R) \text{ intersect all } (select * from S) ;\]

- Remember the rules about duplicates
- “union all”:
 - just append the tuples of \(R\) and \(S\)
- “union”:
 - append the tuples of \(R\) and \(S\)
 - duplicate elimination
- “intersection”: similar to joins
 - Find tuples of \(R\) and \(S\) that are identical on all attributes
 - Can use hash-based or sort-based algorithm

Query Processing

- Overview
- Selection operation
- Join operators
- Other operators
- Putting it all together…
- Sorting
Evaluation of Expressions

select customer-name
from account a, customer c
where a.SSN = c.SSN and
 a.balance < 2500

- Two options:
 - Materialization
 - Pipelining

Evaluation of Expressions

- **Materialization**
 - Evaluate each expression separately
 - Store its result on disk in temporary relations
 - Read it for next operation

- **Pipelining**
 - Evaluate multiple operators simultaneously
 - Do not go to disk
 - Usually faster, but requires more memory
 - Also not always possible..
 - E.g. Sort-Merge Join
 - Harder to reason about
Materialization

- Materialized evaluation *always* works
- Can be expensive to write and read back from disk
 - Cost formulas ignore cost of writing final results to disk, so
 - Overall cost = Sum of costs of individual operations +
 cost of writing intermediate results to disk
- Double buffering: use two output buffers for each operation, when one is full write it to disk, while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Evaluate several operations at same time passing results from one to the next.
- E.g., in previous expression tree, don’t store result of
 \[\sigma_{balance < 2500}(account) \]
 - Instead, pass tuples directly to the join.
 - Similarly, don’t store result of join, pass tuples directly to projection.
- Much cheaper: no need to store a temporary relation to disk.
- Requires more memory
 - All operations are executing at the same time (say as processes)
- Somewhat limited applicability
- Beware blocking operations:
 - must consume *entire input before* it starts producing output tuples
Pipelining

- Need operators that generate output tuples while receiving tuples from their inputs
 - Selection: Usually yes.
 - Sort: NO. The sort operation is **blocking**
 - Sort-merge join: The final (merge) phase can be pipelined
 - Hash join: The partitioning phase is **blocking**; the second phase can be pipelined
 - Aggregates: Typically no.
 - Duplicate elimination: Since it requires sort, the final merge phase could be pipelined
 - Set operations: *see duplicate elimination*

Pipelining: Demand-driven

- **Iterator Interface**
 - Each operator implements:
 - init(): Initialize the state (sometimes called open())
 - get_next(): get the next tuple from the operator
 - close(): Finish and clean up
 - Example: sequential scan:
 - init(): open the file
 - get_next(): get the next tuple from file
 - close(): close the file
 - Execute by repeatedly calling get_next() at the root
 - root calls get_next() on its children, the children call get_next() on their children etc…
 - The operators need to maintain internal state so they know what to do when the parent calls get_next()