So far...

- **Block Nested-loops join**
 - Can always be applied irrespective of the join condition
 - If the smaller relation fits in memory, then cost:
 - \(b_r + b_s \)
 - This is the best we can hope if we have to read the relations once each
 - CPU cost of the inner loop is high...

Index Nested-loops Join

- `select * from R, S where R.a = S.a`
 - “equi-join”
- Nested-loops
 - `for each tuple r in R`
 - `for each tuple s in S`
 - `check if r.a = s.a (or whether |r.a – s.a| < 0.5)`
- Suppose there is an index on \(S.a \)
- **Why not use the index instead of the inner loop?**
 - `for each tuple r in R`
 - `use the index to find S tuples with S.a = r.a`
Index Nested-loops Join

- select * from R, S where R.a = S.a
 - Called an “equi-join”
 - Why not use the index instead of the inner loop?
 for each tuple r in R
 use the index to find S tuples with S.a = r.a

- Cost of the join:
 - \(b_r (t_T + t_S) + n_r \ast c \)
 - \(c == \) the cost of index access
 - Computed using the formulas discussed earlier

Index Nested-loops Join

- W/ indexes for both R, S, use one w/ fewer tuples as outer.
- Assume fanout of 20 for both trees.

- With S on outside, B+-tree on R is height 3
 - Cost is \(100 + 5000 \ast (3 + 1) = 20,100 \), each w/ seek and transfer

- With R on outside, B+-tree on S is height = 2
 - Cost is \(400 + 10000 \ast (2+1) = 30,400 \), each w/ seek and transfer

\(n_r = 10,000, S: n_s = 5000 \)
\(b_r = 400, S: b_s = 100 \)
Index Nested-loops Join

- Restricted applicability
 - An appropriate index must exist
 - What about $|R.a - S.a| < 5$? (it’s not good)
- Great for queries with joins and selections

  ```sql
  SELECT *
  FROM accounts, customers
  WHERE accounts.customer-SSN = customers.customer-SSN AND
  accounts.acct-number = "A-101"
  ```

 - Use `accounts` as outer, use select to prune reads of customers

So far…

- Block Nested-loops join
 - Can always be applied irrespective of the join condition
 - If the smaller relation fits in memory, then cost:
 - $b_r + b_s$
 - This is the best we can hope if we have to read the relations once each
 - CPU cost of the inner loop is high
 - Typically used when the smaller relation is really small (few tuples) and index nested-loops can’t be used
- Index Nested-loops join
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - `select balance from customer, accounts where customer.name = "j. s." and customer.SSN = accounts.SSN`
Recall: External Sorting Using Sort-Merge (N >= M)

M = 3
N = 12

blocks:
\[b_r (2 \lfloor \log_M (b_r/M) \rfloor + 1) \]

seeks:
\[2 \lfloor b_r/M \rfloor + \lfloor b_r/b_b \rfloor (2 \lfloor \log_M (b_r/M) \rfloor - 1) \]

Merge-Join (Sort-merge join)

- Pre-condition:
 - equi/natural joins
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this
- Called “sort-merge join” sometimes

\[\text{SELECT} * \]
\[\text{FROM} \ r, s \]
\[\text{WHERE} \ r.a1 = s.a1 \]

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list
 - Depending on the join condition
3. Repeat
Merge-Join (Sort-merge join)

- **Cost:**
 - If the relations sorted, then just
 - $b_r + b_s$ block transfers, some seeks depending on memory size
 - What if not sorted?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join
- **Observation:**
 - The final join result will also be sorted on a_1
 - This might make further operations easier to do
 - E.g. duplicate elimination

Hash Join

read S in memory and *build a hash index on it*

for each tuple r *in* R

use the hash index on S *to find tuples such that* $S.a = r.a$

Case 1: Smaller relation (S) fits in memory

- *recall* Nested-loops join:
 for each tuple r *in* R
 for each tuple s *in* S
 check if $r.a = s.a$
- Cost: $b_r + b_s$ transfers, 2 seeks
- The inner loop is not exactly cheap (high CPU cost)
Hash Join

Case 1: Smaller relation (S) fits in memory

for each tuple r in R

for each tuple s in S

use the hash index on S to find tuples such that S.a = r.a

- Cost: \(b_r + b_s\) transfers, 2 seeks (unchanged)
- Why good?
 - CPU cost is much better
 - Much better than nested-loops join when S doesn’t fit in memory (next)

Hash Join

- Case 2: Smaller relation (S) doesn’t fit in memory
- Basic idea:
 - partition tuples of each relation into sets that have same value on join attributes
 - must be equi-/natural join
- Phase 1:
 - Read \(R\) block by block and partition it using a hash function:
 - \(h1(a)\) // assume has \(k\) distinct outputs
 - Create one partition for each possible value of \(h1(a)\) (\(k\) partitions)
 - Write the partitions to disk
 - \(R\) gets partitioned into \(R_1, R_2, \ldots, R_k\)
 - Similarly, read and partition \(S\), and write partitions \(S_1, S_2, \ldots, S_k\) to disk
 - Only requirements:
 - Room for a single input block and one output block for each hash value
 - Each \(S\) partition fits into remaining memory
Hash Join

- Case 2: Smaller relation (S) doesn’t fit in memory
- Phase 1
- Phase 2:
 - Read S_i into memory, and build a hash index on it (S_i fits in memory)
 - Use a different hash function from the partition hash: $h_2(a)$
 - Read R_i block by block, and use the hash index to find matches.
 - Repeat for all i.

Hash Join

- $k = 5$
 - num hash values
Hash Join

- **Case 2: Smaller relation \((S)\) doesn’t fit in memory**
- Two “phases”:
 - **Phase 1**:
 - Partition the relations using one hash function, \(h_1(a)\)
 - **Phase 2**:
 - Read \(S_i\) into memory, and build a hash index on it (\(S_i\) fits in memory)
 - Read \(R_i\) block by block, and use the hash index to find matches.
- **Cost**?
 - \(3(b_r + b_s)\) block transfers
 - \(R\) or \(S\) might have partially full block to be read and written (ignored)
 - \(+ 2\left(\left\lfloor \frac{b_r}{b_b}\right\rfloor + \left\lfloor \frac{b_s}{b_b}\right\rfloor\right)\) seeks (seek count unclear)
 - Where \(b_b\) is the size of each input buffer (p 702)
 - Much better than Nested-loops join under the same conditions

Hash Join: Issues

- **How to guarantee that each partition of \(S\) fits in memory?**
 - Say \(S = 10,000\) blocks, \(Memory = M = 100\) blocks
 - Use a hash function that hashes to 100 different values?
 - Eg. \(h_1(a) = a \% 100\) ?
 - Problem: Impossible to guarantee uniform split
 - Some partitions will be larger than 100 blocks, some will be smaller
 - Use a hash function that hashes to \(100*f\) different values
 - \(f\) is called fudge factor, typically around 1.2
 - So we may consider \(h_1(a) = a \% 120\).
 - This is okay IF \(a\) is nearly uniformly distributed
- **Why not just set hash to output 200 values?**
 - need to have a per-value output block in mem during build phase
Hash Join: Issues

- Memory required?
 - Say $S = 10000$ blocks, $Memory = M = 100$ blocks
 - So 120 different partitions
 - During phase 1:
 - Need 1 block for storing R
 - Need 120 blocks for storing each partition of R
 - So must have at least 121 blocks of memory
 - We only have 100 blocks
- Typically need $\sqrt{|S| \cdot f}$ blocks of memory
 - So if S is 10000 blocks, and $f = 1.2$, need 110 blocks of memory
 - Need:
 - $M > n_h + 1$
 - each partition of S to fit in $M-1$ (why not R?)
 - space for hash build on $h2()$ (usually ignored)
 - Example:
 - $h_n = 109$, average size $= 10,000/109 = 91.7$

Hash Join: If S_i Too Large

- Avoidance
 - Fudge factor

- Resolution
 - partition w/ a third hash $h3()$
 - also partition R_i
 - go through each sub-partition
 - this approach could be used for every partition
Hash Join: Example

Estimate cost of single-step hash-join on R and S. Assume:

\[b_r = 2000, b_s = 1000, M = 202, \text{ fudge factor is } 1.0 \]

Partitions of R?

R partition sizes do not matter. Each partition of S needs to fit.

During the merge phase we need 1 block for R, 1 for output, and then have 200 for S: 5 partitions for S, so 5 partitions for R.

Block transfers for the partitioning phase?

Each block of R and S must be read and written once, so:

\[2 \times (2000+1000) = 6000 \]

Block transfers during the second (join) phase?

\[2000 + 1000 = 3000 \] because we ignore the final writes (pipelining).

How many seeks in join phase?

We ignore the final writes, so for each set of partitions, we seek to beginning of S to read it into memory, then seek to beginning of R and go through block by block (it does not fit into memory). Total num seeks = \(5(1+1) = 10\).

Query Processing

- Overview
- Selection operation
- Join operators
- Other operators
- Putting it all together…
Joins: Summary

- **Block Nested-loops join**
 - Can always be applied irrespective of the join condition
- **Index Nested-loops join**
 - Only applies if an appropriate index exists
- **Hash joins – only for equi-joins**
 - Join algorithm of choice when the relations are large
- **Sort-merge join**
 - Very commonly used – especially since relations are typically sorted
 - Sorted results commonly desired at the output
 - To answer group by queries, for duplicate elimination, because of ASC/DSC

Query Processing

- **Overview**
- **Selection operation**
- **Sorting**
- **Join operators**
- **Other operators**
- **Putting it all together…**
Group By and Aggregation

\[
\text{select } a, \text{ count}(b) \\
\text{from } R \\
\text{group by } a;
\]

- **Hash-based algorithm:**
 - Create a hash table on \(a \), and keep the \text{count}(b) so far
 - Read \(R \) tuples one by one
 - For a new \(R \) tuple, “\(r \)”
 - Check if \(r.a \) exists in the hash table
 - If yes, increment the count
 - If not, insert a new value

Group By and Aggregation

\[
\text{select } a, \text{ count}(b) \\
\text{from } R \\
\text{group by } a;
\]

- **Sort-based algorithm:**
 - Sort \(R \) on \(a \)
 - Now all tuples in a single group are contiguous
 - Read tuples of \(R \) (sorted) one by one and compute the aggregates
Group By and Aggregation

Summary:
- `sum()`, `count()`, `min()`, `max()`: only need to maintain one value per group
 - Called “distributive”
- `average()` : need to maintain the “sum” and “count” per group
 - Called “algebraic”
- `stddev()`: algebraic, but need to maintain some more state
- `median()`: can do efficiently with sort, but need two passes (called “holistic”)
 - First to find the number of tuples in each group, and then to find the median tuple in each group
- `count(distinct b)`: must do duplicate elimination before the count

Duplicate Elimination

```
select distinct a
from R;
```
- Best done using sorting – Can also be done using hashing
- Steps:
 - Sort the relation R
 - Read tuples of R in sorted order
 - $prev = null$;
 - for each tuple r in R (sorted)
 - if $r \neq prev$ then
 - Output r
 - $prev = r$
 - else
 - Skip r
```
Set operations

\[(\text{select } * \text{ from } R) \text{ union } (\text{select } * \text{ from } S) ;\]
\[(\text{select } * \text{ from } R) \text{ intersect } (\text{select } * \text{ from } S) ;\]
\[(\text{select } * \text{ from } R) \text{ union all } (\text{select } * \text{ from } S) ;\]
\[(\text{select } * \text{ from } R) \text{ intersect all } (\text{select } * \text{ from } S) ;\]

- Remember the rules about duplicates
- “union all”: just append the tuples of $R$ and $S$
- “union”: append the tuples of $R$ and $S$, and do duplicate elimination
- “intersection”: similar to joins
  - Find tuples of $R$ and $S$ that are identical on all attributes
  - Can use hash-based or sort-based algorithm

Query Processing

- Overview
- Selection operation
- Sorting
- Join operators
- Other operators
- Putting it all together…
Two options:

- Materialization
- Pipelining

Materialization

- Evaluate each expression separately
  - Store its result on disk in temporary relations
  - Read it for next operation

Pipelining

- Evaluate multiple operators simultaneously
  - Do not go to disk
  - Usually faster, but requires more memory
  - Also not always possible...
  - E.g. Sort-Merge Join
  - Harder to reason about
Materialization

- Materialized evaluation *always* works
- Can be expensive to write and read back from disk
  - Cost formulas ignore cost of writing final results to disk, so
  - Overall cost = Sum of costs of individual operations +
    cost of writing intermediate results to disk
- Double buffering: use two output buffers for each operation, when one is full write it to disk, while the other is getting filled
  - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Evaluate several operations at same time
  - passing results from one to the next.
- E.g., in previous expression tree, don’t store result of
  \[ \sigma_{\text{balance} < 2500}(\text{account}) \]
  - Instead, pass tuples directly to the join.
  - Similarly, don’t store result of join, pass tuples directly to projection.
- Much cheaper: no need to store a temporary relation to disk.
- Requires more memory
  - All operations are executing at the same time (say as processes)
- Somewhat limited applicability
- Beware blocking operations:
  - must consume entire input before it starts producing output tuples
Pipelining

- Need operators that generate output tuples while receiving tuples from their inputs
  - Selection: Usually yes.
  - Sort: NO. The sort operation is blocking
  - Sort-merge join: The final (merge) phase can be pipelined
  - Hash join: The partitioning phase is blocking; the second phase can be pipelined
  - Aggregates: Typically no.
  - Duplicate elimination: Since it requires sort, the final merge phase could be pipelined
- Set operations: see duplicate elimination

Pipelining: Demand-driven

- Iterator Interface
  - Each operator implements:
    - init(): Initialize the state (sometimes called open())
    - get_next(): get the next tuple from the operator
    - close(): Finish and clean up
  - Example: sequential scan:
    - init(): open the file
    - get_next(): get the next tuple from file
    - close(): close the file
  - Execute by repeatedly calling get_next() at the root
    - root calls get_next() on its children, the children call get_next() on their children etc...
  - The operators need to maintain internal state so they know what to do when the parent calls get_next()
Example: Hash-Join Iterator Interface

- **open():**
  - Call open() on the left and the right children
  - Decide if partitioning needed (if size of smaller relation > memory)
  - Create a hash table
- **get_next():** (no partitioning)
  - First call:
    - Get all tuples from the right child one by one (using get_next()), and insert them into the hash table
    - Read the first tuple from the left child (using get_next())
  - All calls:
    - Probe into the hash table using the “current” tuple from the left child
      - Read a new tuple from left child if needed
    - Return exactly “one result”
      - Must keep track if more results need to be returned for that tuple

Hash-Join Iterator Interface

- **close():**
  - Call close() on the left and the right children
  - Delete the hash table, other intermediate state etc…
- **get_next():** (partitioning)
  - First call:
    - Get all tuples from both children and create the partitions on disk
    - Read the first partition for the right child and populate the hash table
    - Read the first tuple from the left child from appropriate partition
  - All calls:
    - Once a partition is finished, clear the hash table, read in a new partition from the right child, and re-populate the hash table
    - Not that much more complicated

  - Take a look at the postgresQL codebase (or assignment 7)
Pipelining (Cont.)

- In producer-driven or *eager* pipelining:
  - Operators produce tuples eagerly and pass them up to their parents
    - Buffer maintained between operators, child puts tuples in buffer, parent removes tuples from buffer
    - If buffer is full, child waits till there is space in the buffer, and then generates more tuples
  - System runs operations that have space in output buffer and can process more input tuples