Outline

- SQL (Chapter 3)
 - Setting up the PostgreSQL database
 - Data Definition (3.2)
 - Basics (3.3-3.5)
 - Null values (3.6)
 - Aggregates (3.7)
- Relational Model (Chapter 2)
 - Basics
 - Keys
 - Relational operations
 - Relational algebra basics

Keys

- Let $K \subseteq R$ (R is a set of attributes)
- K is a superkey of R if values for K are sufficient to identify a unique tuple of any possible relation $r(R)$
 - Example: \{ID\} and \{ID,name\} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal (i.e., no subset of it is a superkey)
 - Example: \{ID\} is a candidate key for Instructor
- One of the candidate keys is selected to be the primary key
 - Typically one that is small and immutable (doesn’t change often)
 - Chosen by app/user
- Primary key typically highlighted (e.g., underlined)
Tables in a University Database

classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)

Is ID, course_id a superkey?
No. May repeat:
(“1011049”, “CMSC424”, “102”, “Fall”, 2015, null)

What about ID, course_id, sec_id?
May repeat:
(“1011049”, “CMSC424”, “101”, “Fall”, 2015, null)

What about ID, course_id, sec_id, semester?
Tables in a University Database

classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Keys

- **Foreign key**: *Primary key* of a relation that appears in another relation
 - {ID} from student appears in takes, advisor
 - student called **referenced** relation
 - takes is the **referencing** relation
 - Typically shown by an arrow from referencing to referenced

- **Foreign key constraint**: the tuple corresponding to that primary key must exist
 - Imagine:
 - Tuple: (‘student101’, ‘CMSC424’) in takes
 - But no tuple corresponding to ‘student101’ in student
 - Also called **referential integrity constraint**
Examples

- Married(person1_ssn, person2_ssn, date_married, date_divorced)
 - Married(person1_ssn, person2_ssn, date_married, date_divorced)
- Account(cust_ssn, account_number, cust_name, balance, cust_address)
 - If a single account per customer, then: cust_ssn
 - Else: (cust_ssn, account_number)
 - Not a good schema because it requires repeating information
- RA(student_id, project_id, supervisor_id, appt_time, appt_start_date, appt_end_date)
 - RA(student_id, project_id, supervisor_id, appt_time, appt_start_date, appt_end_date)
 - Could be smaller if there are some restrictions – requires some domain knowledge of the data being stored
- Person(Name, DOB, Born, Education, Religion, ...)
 - Information typically found on Wikipedia Pages
 - Unclear what could be a primary key here: you could in theory have two people who match on all of those
Relational Query Languages

- Example schema: $R(A, B)$
- Practical languages
 - SQL
 - `select A from R where B = 5;`
 - Datalog (sort of practical)
 - `q(A) :- R(A, 5)`
- Formal languages
 - Relational algebra
 - $\pi_A (\sigma_{B=5}(R))$
 - Tuple relational calculus
 - $\{ t : \{A\} \mid \exists s : \{A, B\} (R(A, B) \land s.B = 5) \}$
 - Domain relational calculus
 - Similar to tuple relational calculus

Some of the languages are “procedural” and provide a set of operations
- Each operation takes one or two relations as input, and produces a single relation as output
- Examples: Relational Algebra

The “non-procedural” (also called “declarative”) languages specify the output, but don’t specify the operations
- SQL, Relational calculus
- Datalog (used as an intermediate layer in quite a few systems today)
Select Operation

Choose a subset of the tuples that satisfies some predicate
Denoted by σ in relational algebra

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

$\sigma_{A=B \land D > 5} (r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Project

Choose a subset of the columns (for all rows)
Denoted by Π in relational algebra

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

$\Pi_{A,D} (r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Relational algebra following “set” semantics – so no duplicates
SQL allows for duplicates – we will cover the formal semantics later
Set Union, Difference

Relation \(r, s \)

\[
\begin{array}{cc}
A & B \\
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\end{array}
\quad
\begin{array}{cc}
A & B \\
\alpha & 2 \\
\beta & 3 \\
\end{array}
\quad
\begin{array}{cc}
A & B \\
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\beta & 3 \\
\end{array}
\]

\(r \cup s: \)

\(r - s: \)

\[r \cap s = r - (r - s);\]

Must be compatible schemas

What about intersection?

Can be derived

Cartesian Product

Combine tuples from two relations

If one relation contains \(N \) tuples and the other contains \(M \) tuples, the result would contain \(N \times M \) tuples

The result is rarely useful – almost always you want pairs of tuples that satisfy some condition

Relation \(r, s \)

\[
\begin{array}{ccc}
A & B & C & D & E \\
\alpha & 1 & 10 & a \\
\beta & 2 & 10 & a \\
\gamma & 1 & 20 & b \\
\end{array}
\quad
\begin{array}{cccc}
A & B & C & D & E \\
\alpha & 1 & 1 & 10 & a \\
\alpha & 1 & \beta & 20 & b \\
\alpha & 1 & \gamma & 10 & b \\
\beta & 2 & \alpha & 10 & a \\
\beta & 2 & \beta & 10 & a \\
\beta & 2 & \gamma & 10 & b \\
\end{array}
\]

\(r \times s: \)
Joins

Combine tuples from two relations if the pair of tuples satisfies some constraint

Equivalent to Cartesian Product followed by a Select

Relation r, s

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>10</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

r ⋈ A = C s:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>20</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>10</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restriction on attributes A

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>10</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

\[\rho_X(E) \]

returns the expression \(E \) under the name \(X \)

If a relational-algebra expression \(E \) has arity \(n \), then

\[\rho_X(A_1, A_2, ..., A_n)(E) \]

returns the result of expression \(E \) under the name \(X \), and with the attributes renamed to \(A_1, A_2, ..., A_n \).
Additional Operators

- Set intersection (∩)
 - $r \cap s = r - (r - s)$
 - SQL Equivalent: intersect

- Assignment (←)
 - A convenient way to right complex RA expressions
 - Essentially for creating “temporary” relations
 - $temp1 \leftarrow \Pi_{R \cdot S}(r)$
 - SQL Equivalent: “create table as...”

Additional Operators: Joins

- Natural join (⋈)
 - A Cartesian product with equality condition on common attributes
 - Example:
 - if r has schema $R(A, B, C, D)$ and if s has schema $S(E, B, D)$
 - Common attributes: B and D
 - Then:

 \[
 r \bowtie s = \Pi_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s))
 \]

 - SQL Equivalent:
 - select $r.A, r.B, r.C, r.D, s.E$ from r, s where $r.B = s.B$ and $r.D = s.D$, OR
 - select * from r natural join s
Additional Operators: Joins

- **Equi-join**
 - A join that only has equality conditions

- **Theta-join** \((\bowtie_\theta) \)
 - \(r \bowtie_\theta s = \sigma_\theta(r \times s) \) (combines cartesian and select in single statement)

- **Left outer join** \((\bow年\))
 - Say \(r(A, B), s(B, C) \)
 - We need to somehow find the tuples in \(r \) that have no match in \(s \)
 - What is this? \((r - \pi_{r.A, r.B}(r \bow年 s)) \)
 - \(r \bow年 s = (r \bow年 s) \cup \rho_{\text{temp}(A, B, C)}((r - \pi_{r.A, r.B}(r \bow年 s)) \times \{\text{NULL}\}) \)

Additional Operators: Join Variations

Tables: r(A, B), s(B, C)

<table>
<thead>
<tr>
<th>name</th>
<th>Symbol</th>
<th>SQL Equivalent</th>
<th>RA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross product</td>
<td>(\times)</td>
<td>select * from r, s;</td>
<td>(r \times s)</td>
</tr>
<tr>
<td>natural join</td>
<td>(\bowland)</td>
<td>natural join</td>
<td>(\pi_{r.A, r.B, s.C}\sigma_{r.B = s.B}(r \times s))</td>
</tr>
<tr>
<td>equi–join</td>
<td>(\bowdird_\theta)</td>
<td>(\text{(theta must be equality)})</td>
<td></td>
</tr>
<tr>
<td>theta join</td>
<td>(\bowdird_\theta)</td>
<td>from .. where (\theta);</td>
<td>(\sigma_\theta(r \times s))</td>
</tr>
<tr>
<td>left outer join</td>
<td>(r \bow年 s)</td>
<td>left outer join (with “on”);</td>
<td>(see previous slide)</td>
</tr>
<tr>
<td>full outer join</td>
<td>(r \bow年 s)</td>
<td>full outer join (with “on”);</td>
<td>–</td>
</tr>
<tr>
<td>(left) semijoin</td>
<td>(r \bowtimes s)</td>
<td>none</td>
<td>(\pi_{r.A, r.B}(r \bow年 s))</td>
</tr>
<tr>
<td>(left) antijoin</td>
<td>(r \bowtriangledown s)</td>
<td>none</td>
<td>(r - \pi_{r.A, r.B}(r \bowyear s))</td>
</tr>
</tbody>
</table>
Additional Operators: Division

- Assume \(r(R), s(S) \), for queries where \(S \subseteq R \):
 - \(r \div s \)
- Think of it as “opposite of Cartesian product”
 - \(r \div s = t \iff t \times s \subseteq r \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>β</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>β</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>α</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>β</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>β</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>γ</td>
<td>10</td>
<td>b</td>
</tr>
</tbody>
</table>

\[A \quad \div \quad C \quad D \quad E \]

\[A \quad B \]

\[= \]

\[C \quad D \quad E \]

\[A \quad 1 \]

\[β \quad 2 \]

\[α \quad 10 \quad a \]

\[β \quad 10 \quad a \]

\[β \quad 20 \quad b \]

\[γ \quad 10 \quad b \]

Relational Algebra Examples

Find all loans of over $1200:

\[\sigma_{\text{amount} > 1200} \text{(loan)} \]

Find the loan number for each loan of an amount greater than $1200:

\[\Pi_{\text{loan-number}} (\sigma_{\text{amount} > 1200} \text{(loan)}) \]

Find names of all customers who have a loan, account, or both, from the bank:

\[\Pi_{\text{customer-name}} (\text{borrower}) \cup \Pi_{\text{customer-name}} (\text{depositor}) \]
Relational Algebra Examples

Find names of customers who have a loan and an account at bank:

\[\Pi_{\text{customer-name}} (\text{borrower}) \cap \Pi_{\text{customer-name}} (\text{depositor}) \]

Find names of customers who have a loan at the Perryridge branch:

\[\Pi_{\text{customer-name}} (\sigma_{\text{branch-name} = \text{"Perryridge"}} (\sigma_{\text{borrower.loan-number} = \text{loan.loan-number}} (\text{borrower x loan})))) \]

Find largest account balance(balance), assume \{(1), (2), (3)\}

Rename the account relation to d

\[\Pi_{\text{balance}} (\text{account}) - \Pi_{\text{account.balance}} (\sigma_{\text{account.balance} < d.\text{balance}} (\text{account x } \rho_d (\text{account}))) \]
Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.
 \[\Pi_{F_1, F_2, ..., F_n}(E) \]

- \(E \) is any relational-algebra expression
- Each of \(F_1, F_2, ..., F_n \) are arithmetic expressions involving constants and attributes in the schema of \(E \).
- Given relation \(instructor(ID, name, dept_name, salary) \) where salary is annual salary, get the same information but with monthly salary
 \[\Pi_{ID, name, dept_name, salary/12}(instructor) \]