Query Processing

- Overview
- Selection operation
- Join operators
- Sorting
- Other operators
- Putting it all together…

Join

- `select * from R, S where R.a = S.a`
 - Called an "equi-join"
- `select * from R, S where |R.a – S.a| < 0.5`
 - Not an "equi-join"

- Option 1: Nested-loops
 `for each tuple r in R`
 ` for each tuple s in S`
 ` check if r.a = s.a (or whether |r.a – s.a| < 0.5)`
 - Can be used for any join condition
 - As opposed to some algorithms we will see later
 - R called `outer relation`
 - S called `inner relation`
Nested-loops Join

- Cost? Depends on the actual values of parameters, especially memory
- \(b_r, b_s \rightarrow \text{Number of blocks of } R \text{ and } S \)
- \(n_r, n_s \rightarrow \text{Number of tuples of } R \text{ and } S \)
- **Case 1:** Minimum memory required = 3 blocks
 - One to hold the current \(R \) block, one for current \(S \) block, one for the result being produced
 - Blocks transferred:
 - Must scan \(R \) tuples once: \(b_r \)
 - For each \(R \) tuple, must scan \(S \): \(n_r \times b_s \)
 - Seeks?
 - \(n_r + b_r \)

Case 1: Minimum memory required = 3 blocks
- Blocks transferred: \(n_r \times b_s + b_r \)
- Seeks: \(n_r + b_r \)
- **Example:**
 - Number of records -- \(R \): \(n_r = 10,000, S: n_s = 5000 \)
 - Number of blocks -- \(R \): \(b_r = 400, S: b_s = 100 \)
- \(R \) "outer relation":
 - blocks transferred: \(n_r \times b_s + b_r = 10000 \times 100 + 400 = 1,000,400 \)
 - seeks: 10400
 - time: \(1000400 \times t_r + 10400 \times t_s = 1000400(0.1\text{ms}) + 10400(4\text{ms}) = 1020.8 \text{ sec} \)
- \(S \) "outer relation?"
 - \(5000 \times 400 + 100 = 2,000,100 \) block transfers,
 - 5100 seeks
 - \(= 2000100 \times t_r + 5100 \times t_s = 2041.7 \text{ sec} \)

Order matters!
Nested-loops Join

- **Case 2:** S fits in memory
 - Blocks transferred: $b_s + b_r$
 - Seeks: 2
- **Example:**
 - Number of records -- R: $n_r = 10,000$, S: $n_s = 5000$
 - Number of blocks -- R: $b_r = 400$, S: $b_s = 100$
- **Then:**
 - blocks transferred: $400 + 100 = 500$
 - seeks: 2
 - $= 500t_r + 2t_s = 0.058$ sec

Orders of magnitude difference

Block Nested-loops Join

- **Simple modification to “nested-loops join”** (block at a time)

 for each block B_r in R
 for each block B_s in S
 for each tuple r in B_r
 for each tuple s in B_s
 check if $r.a = s.a$ (or whether $|r.a - s.a| < 0.5$)

- **Case 1: Minimum memory required = 3 blocks**
 - Blocks transferred: $b_r * b_s + b_r$
 - Seeks: $2 * b_r$
- **For the example:**
 - blocks: 40400, seeks: $800 = 4.04 + 3.2 = 7.24$ sec
Block Nested-loops Join

- **Case 1:** Minimum memory required = 3 blocks
 - Blocks transferred: \(b_r \times b_s + b_r \)
 - Seeks: \(2 \times b_r \)

- **Case 2:** \(S \) fits in memory
 - Blocks transferred: \(b_s + b_r \)
 - Seeks: \(2 \)

- **What about in between?**
 - Say there are 50 blocks, but \(S \) is 100 blocks
 - Why not use all the memory that we can...

- **Case 3:** 50 blocks (\(S = 100 \) blocks)
 - For each group of 48 blocks in \(R \)
 - For each block \(B_s \) in \(S \)
 - For each tuple \(r \) in the group of 48 blocks
 - For each tuple \(s \) in \(B_s \)
 - Check if \(r.a = s.a \) (or whether \(|r.a - s.a| < 0.5 \))

- **Why is this good?**
 - We only have to read \(S \) a total of \(b_r/48 \) times (instead of \(b_r \) times)
 - Blocks transferred: \(b_s \times b_r/48 + b_r = 100 \times 400/48 + 400 = 1233 \)
 - Or \(b_s \times b_r/48 + b_r = 400 \times 100/48 + 100 = 933 \) (but more seeks)
 - Seeks: \(2 \times b_r/48 \)
Index Nested-loops Join

- \textit{select * from R, S where R.a = S.a} \\
 - “equi-join” \\
- Nested-loops

 \textit{for each tuple r in R} \\
 \hspace{1em} \textit{for each tuple s in S} \\
 \hspace{2em} \textit{check if r.a = s.a (or whether |r.a – s.a| < 0.5)} \\

- Suppose there is an index on \textit{S.a} \\
- \textit{Why not use the index instead of the inner loop?} \\
 \textit{for each tuple r in R} \\
 \hspace{1em} \textit{use the index to find S tuples with S.a = r.a} \\

Cost of the join:

- \(b_r (t_r + t_s) + n_r \times c \) \\
- \(c == \text{the cost of index access} \) \\
 - \textit{Computed using the formulas discussed earlier}
Index Nested-loops Join

- W/ indexes for both \(R, S \), use one w/ fewer tuples as outer.
 - Recall example:
 - Number of records -- \(R: n_r = 10,000 \), \(S: n_s = 5000 \)
 - Number of blocks -- \(R: b_r = 400 \), \(S: b_s = 100 \)
 - Assume B+-tree for \(R \), avg fanout of 20, implies height \(R \) is 4
 - Cost is \(100 + 5000 \times (4 + 1) = 25,100 \), each w/ seek and transfer
 - Assume B+-tree is on \(S \): height = 3
 - Cost is \(400 + 10000 \times (3+1) = 40,400 \), each w/ seek and transfer

- Restricted applicability
 - An appropriate index must exist
 - What about \(|R.a - S.a| < 5 \)?
- Great for queries with joins and selections

  ```sql
  SELECT * 
  FROM accounts, customers
  WHERE accounts.customer-SSN = customers.customer-SSN AND
    accounts.acct-number = “A-101”
  USE accounts as outer, use select to prune reads of customers
  ```
So far…

- **Block Nested-loops join**
 - Can always be applied irrespective of the join condition
 - If the smaller relation fits in memory, then cost:
 - \(b_r + b_s \)
 - This is the best we can hope if we have to read the relations once each
 - CPU cost of the inner loop is high
 - Typically used when the smaller relation is really small (few tuples) and index nested-loops can’t be used

- **Index Nested-loops join**
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - `select balance from customer, accounts where customer.name = “j. s.” and customer.SSN = accounts.SSN`

Recall: External Sorting Using Sort-Merge (N >= M)

![Sorting Diagram]

\[b_r \left(2 \left[\log_{M'}(b_r/M) \right] + 1 \right) \text{ blocks} \]

\[2 \left[\frac{b_r}{M} \right] + \left[\frac{b_r}{b_s} \right] \left(2 \left[\log_{M'}(b_r/M) \right] - 1 \right) \text{ seeks} \]
Merge-Join (Sort-merge join)

- **Pre-condition:**
 - equi-/natural joins
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this
- **Called “sort-merge join” sometimes**

\[
\text{SELECT } * \\
\text{FROM } r, s \\
\text{WHERE } r.a1 = s.a1
\]

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list
 - Depending on the join condition
3. Repeat

![Diagram](image)

Merge-Join (Sort-merge join)

- **Cost:**
 - If the relations sorted, then just
 - \(b_r + b_s\) block transfers, some seeks depending on memory size
 - What if not sorted?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join
- **Observation:**
 - The final join result will also be sorted on \(a1\)
 - This might make further operations easier to do
 - E.g. duplicate elimination
So far…

- **Block Nested-loops join**
 - Can always be applied irrespective of the join condition
- **Index Nested-loops join**
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - `select balance from customer, accounts where customer.name = "j. s." and customer.SSN = accounts.SSN`
- **Merge joins**
 - Join algorithm of choice when the relations are large
 - Sorted results commonly desired at the output
 - To answer group by queries, for duplicate elimination, because of ASC/DSC

Hash Join

- **Case 1: Smaller relation \(S \) fits in memory**
- Nested-loops join:

  ```
  for each tuple \( r \) in \( R \)
  
  for each tuple \( s \) in \( S \)
  
  check if \( r.a = s.a \)
  ```
- Cost: \(b_r + b_s \) transfers, 2 seeks
- The inner loop is not exactly cheap (high CPU cost)

- Hash join:

  ```
  read \( S \) in memory and build a hash index on it
  
  for each tuple \( r \) in \( R \)
  
  use the hash index on \( S \) to find tuples such that \( S.a = r.a \)
  ```
Hash Join

- **Case 1: Smaller relation (S) fits in memory**
- Hash join:

 read S in memory and build a hash index on it
 for each tuple r in R
 use the hash index on S to find tuples such that S.a = r.a

- Cost: $b_r + b_s$ transfers, 2 seeks (unchanged)

- Why good?
 - CPU cost is much better (even though we don’t care about it too much)
 - Much better than nested-loops join when S doesn’t fit in memory (next)

Hash Join

- **Case 2: Smaller relation (S) doesn’t fit in memory**
- Basic idea:
 - partition tuples of each relation into sets that have same value on join attributes
 - must be equi-/natural join

 - **Phase 1:**
 - Read R block by block and partition it using a hash function: $h1(a)$
 - Create one partition for each possible value of $h1(a)$ (n_r partitions)
 - Write the partitions to disk
 - R gets partitioned into R_1, R_2, \ldots, R_k
 - Similarly, read and partition S, and write partitions S_1, S_2, \ldots, S_k to disk
 - Only requirements:
 - Room for a single input block and one output block for each hash value
 - Each S partition fits in memory
Hash Join

- **Case 2**: Smaller relation \((S) \) doesn’t fit in memory
- Two “phases”
- **Phase 2**:
 - Read \(S_i \) into memory, and build a hash index on it (\(S_i \) fits in memory)
 - *Use a different hash function from the partition hash: \(h_2(a) \)*
 - Read \(R_i \) block by block, and use the hash index to find matches.
 - Repeat for all \(i \).
Hash Join

- **Case 2:** Smaller relation \(S\) doesn’t fit in memory
- **Two “phases”:**
 - **Phase 1:**
 - Partition the relations using one hash function, \(h_1(a)\)
 - **Phase 2:**
 - Read \(S_i\) into memory, and build a hash index on it (\(S_i\) fits in memory)
 - Read \(R_i\) block by block, and use the hash index to find matches.
- **Cost?**
 - \(3(b_r + b_s)\) block transfers
 - \(R\) or \(S\) might have partially full block to be read and written (ignored)
 - \(+ 2\left(\left\lceil b_r/b_b\right\rceil + \left\lceil b_s/b_b\right\rceil\right)\) seeks (seek count unclear)
 - Where \(b_b\) is the size of each input buffer (p 560)
 - Much better than Nested-loops join under the same conditions

Hash Join: Issues

- **How to guarantee that each partition of \(S\) fits in memory?**
 - Say \(S = 10,000\) blocks, Memory = \(M = 100\) blocks
 - Use a hash function that hashes to 100 different values?
 - Eg. \(h_1(a) = a \mod 100\) ?
 - Problem: Impossible to guarantee uniform split
 - Some partitions will be larger than 100 blocks, some will be smaller
 - Use a hash function that hashes to \(100*f\) different values
 - \(f\) is called fudge factor, typically around 1.2
 - So we may consider \(h_1(a) = a \mod 120\).
 - This is okay IF \(a\) is nearly uniformly distributed
- **Why can’t we just set \(h_n\) to 200?**
 - need to have a per-value output block in mem during build phase
Hash Join: Issues

- Memory required?
 - Say $S = 10000$ blocks, $Memory = M = 100$ blocks
 - So 120 different partitions
 - During phase 1:
 - Need 1 block for storing R
 - Need 120 blocks for storing each partition of R
 - So must have at least 121 blocks of memory
 - We only have 100 blocks
- Typically need $\sqrt{|S| \times f}$ blocks of memory
 - So if S is 10000 blocks, and $f = 1.2$, need 110 blocks of memory
 - Need:
 - $M > n_r + 1$
 - each partition of S to fit in $M-1$ (why not R?)
 - space for hash build on $h2()$ (usually ignored)
 - Example:
 - $h_r = 109$, average size = $10,000/109 = 91.7$

Hash Join: If S_i Too Large

- Avoidance
 - Fudge factor
- Resolution
 - partition w/ a third hash $h3()$
 - also partition R_i
 - go through each sub-partition
 - this approach could be used for every partition
Merge-Join (Sort-merge join)

- **Pre-condition:**
 - equi-/natural joins
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this
- **Called “sort-merge join” sometimes**

```
select *
from r, s
where r.a1 = s.a1
```

Step:
1. Compare the tuples at \(p_r \) and \(p_s \)
2. Move pointers down the list - **Depending on the join condition**
3. Repeat

Cost:
- If the relations sorted, then just
 - \(b_r + b_s \) block transfers, some seeks depending on memory size
- What if not sorted?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join

Observation:
- The final join result will also be sorted on \(a1 \)
- This might make further operations easier to do
 - E.g. duplicate elimination