Today’s Plan

- SQL (Chapter 3, 4)
 - Views (4.2)
 - Triggers (5.3)
 - Transactions (4.3)
 - Integrity Constraints (4.4)
 - Functions and Procedures (5.2), Authorization (4.6), Ranking (5.5)
 - Return to / Finishing the Relational Algebra
 - E/R Diagrams

SQL Functions

- Function to count number of instructors in a department
  ```sql
  create function dept_count (dept_name varchar(20))
  returns integer
  begin
    declare d_count integer;
    select count(*) into d_count
    from instructor
    where instructor.dept_name = dept_name
    return d_count;
  end
  ```

- Can use in queries:
  ```sql
  select dept_name, budget
  from department
  where dept_count (dept_name) > 12
  ```
SQL Procedures

- Same function as a procedure:

  ```sql
  create procedure dept_count_proc (in dept_name varchar(20), out d_count integer)
  begin
    select count(*) into d_count
    from instructor
    where instructor.dept_name = dept_count_proc.dept_name
  end
  ```

- But use differently:

  ```sql
  declare d_count integer;
  call dept_count_proc( 'Physics', d_count);
  ```

HOWEVER: Syntax can be wildly different across different systems

- Was put in place by DBMS systems before standardization
- Hard to change once customers are already using
- This example **NOT** valid in your version of postgresql

Recursion in SQL

- Example: find which courses are a prerequisite, whether directly or indirectly, for a specific course

  ```sql
  with recursive rec_prereq(course_id, prereq_id) as (
    select course_id, prereq_id
    from prereq
    union
    select rec_prereq.course_id, prereq.prereq_id,
    from rec_prereq, prereq
    where rec_prereq.prereq_id = prereq.course_id
  )
  select *
  from rec_prereq;
  ```

Makes SQL Turing Complete (i.e., you can write any program in SQL)

But: Just because you can, doesn’t mean you should
Ranking

- Ranking is done in conjunction with an order by specification.

 - Consider: `student_grades(ID, GPA)`

 - Find the rank of each student.

```sql
select ID, rank() over (order by GPA desc) as s_rank
from student_grades
order by s_rank
```

- Equivalent to:

```sql
select ID, (1 + (select count(*)
    from student_grades B
    where B.GPA > A.GPA)) as s_rank
from student_grades A
order by s_rank;
```

Authorization/Security

- GRANT and REVOKE keywords
 - `grant select on instructor to U1, U2, U3`
 - `revoke select on branch from U1, U2, U3`

- Can provide select, insert, update, delete privileges

- Can also create “Roles” and do security at the level of roles

- Some databases support doing this at the level of individual “tuples”
 - PostgreSQL: https://www.postgresql.org/docs/10/ddl-rowsecurity.html
Today’s Plan

> SQL (Chapter 3, 4)
> - Views (4.2)
> - Triggers (5.3)
> - Transactions (4.3)
> - Integrity Constraints (4.4)
> - Functions and Procedures (5.2), Recursive Queries (5.4), Authorization (4.6), Ranking (5.5)
> - Return to / Finishing the Relational Algebra
> - E/R Diagrams

Relational Algebra, Again

> Procedural language
> Six basic operators
> - select
> - project
> - union
> - set difference
> - Cartesian product
> - rename
> Set semantics

The operators take one or more relations as inputs and give a new relation as a result.
Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

\[\rho_X(E) \]

returns the expression \(E \) under the name \(X \)

If a relational-algebra expression \(E \) has arity \(n \), then

\[\rho_{X \{A_1, A_2, ..., A_n\}}(E) \]

returns the result of expression \(E \) under the name \(X \), and with the attributes renamed to \(A_1, A_2, ..., A_n \).

Relational Algebra

- Those are the basic operations

- What about SQL Joins?
 - Compose multiple operators together
 \[\sigma_{A=C}(r \times s) \]

- Additional Operations
 - Set intersection
 - Natural join
 - Division
 - Assignment
Additional Operators

- Set intersection (∩)
 - $r \cap s = r - (r - s)$
 - SQL Equivalent: intersect

- Assignment (←)
 - A convenient way to right complex RA expressions
 - Essentially for creating “temporary” relations
 - $temp1 \leftarrow \Pi_{R \cap S}(r)$
 - SQL Equivalent: “create table as...”

Additional Operators: Joins

- Natural join (⋈)
 - A Cartesian product with equality condition on common attributes
 - Example:
 - if r has schema $R(A, B, C, D)$, and if s has schema $S(E, B, D)$
 - Common attributes: B and D
 - Then:
 \[
 r \bowtie s = \Pi_{r.A, r.B, r.C, r.D, s.E}(\sigma_{r.B = s.B \land r.D = s.D}(r \times s))
 \]
 - SQL Equivalent:
 - select $r.A, r.B, r.C, r.D, s.E$ from r, s where $r.B = s.B$ and $r.D = s.D$, OR
 - select * from r natural join s
Additional Operators: Joins

- **Equi-join**
 - A join that only has equality conditions

- **Theta-join (⋈θ)**
 - \(r \bowtie_\theta s = \sigma_\theta(r \times s) \) (combines cartesian and select in single statement)

- **Left outer join (⟕)**
 - Say \(r(A, B), s(B, C) \)
 - We need to somehow find the tuples in \(r \) that have no match in \(s \)
 - Consider: \((r - \pi_{r.A, r.B}(r \bowtie s)) \)
 - We are done:
 \[
 (r \bowtie s) \cup \rho_{temp (A, B, C)}((r - \pi_{r.A, r.B}(r \bowtie s)) \times \{(NULL)\})
 \]

Additional Operators: Join Variations

- **Tables: \(r(A, B), s(B, C) \)**

<table>
<thead>
<tr>
<th>name</th>
<th>Symbol</th>
<th>SQL Equivalent</th>
<th>RA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross product</td>
<td>(\times)</td>
<td>select * from r, s;</td>
<td>(r \times s)</td>
</tr>
<tr>
<td>natural join</td>
<td>(\bowland)</td>
<td>natural join</td>
<td>(\pi_{r.A, r.B, s.C}(r \bowland s))</td>
</tr>
<tr>
<td>equi–join</td>
<td>(\bowland_\theta)</td>
<td>(theta must be equality)</td>
<td></td>
</tr>
<tr>
<td>theta join</td>
<td>(\bowland_\theta)</td>
<td>from .. where (\theta);</td>
<td>(\sigma_\theta(r \times s))</td>
</tr>
<tr>
<td>left outer join</td>
<td>(r \bowland s)</td>
<td>left outer join (with “on”)</td>
<td>(see previous slide)</td>
</tr>
<tr>
<td>full outer join</td>
<td>(r \bowland s)</td>
<td>full outer join (with “on”)</td>
<td>–</td>
</tr>
<tr>
<td>(left) semijoin</td>
<td>(r \times s)</td>
<td>none</td>
<td>(\pi_{r.A, r.B}(r \bowland s))</td>
</tr>
<tr>
<td>(left) antijoin</td>
<td>(r \bowland s)</td>
<td>none</td>
<td>(r - \pi_{r.A, r.B}(r \bowland s))</td>
</tr>
</tbody>
</table>
Additional Operators: Division

- Assume \(r(R), s(S) \), for queries where \(S \subseteq R \):
 - \(r \div s \)
- Think of it as “opposite of Cartesian product”
 - \(r \div s = t \text{ iff } t \times s \subseteq r \)

\[
\begin{array}{|c|c|c|c|c|}
\hline
A & B & C & D & E \\
\hline
\alpha & 1 & \alpha & 10 & a \\
\alpha & 1 & \beta & 10 & a \\
\alpha & 1 & \beta & 20 & b \\
\alpha & 1 & \gamma & 10 & b \\
\beta & 2 & \alpha & 10 & a \\
\beta & 2 & \beta & 10 & a \\
\beta & 2 & \beta & 20 & b \\
\beta & 2 & \gamma & 10 & b \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
\alpha & 1 \\
\beta & 2 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
C & D & E \\
\hline
\alpha & 10 & a \\
\beta & 10 & a \\
\beta & 20 & b \\
\gamma & 10 & b \\
\hline
\end{array}
\]

Relational Algebra Examples

Find all loans of over $1200:

\[\sigma_{\text{amount} > 1200} (\text{loan}) \]

Find the loan number for each loan of an amount greater than $1200:

\[\Pi_{\text{loan-number}} (\sigma_{\text{amount} > 1200} (\text{loan})) \]

Find names of all customers who have a loan, account, or both, from the bank:

\[\Pi_{\text{customer-name}} (\text{borrower}) \cup \Pi_{\text{customer-name}} (\text{depositor}) \]
Relational Algebra Examples

Find names of customers who have a loan and an account at bank:
\[\Pi_{\text{customer-name}} (\text{borrower}) \cap \Pi_{\text{customer-name}} (\text{depositor}) \]

Find names of customers who have a loan at the Perryridge branch:
\[\Pi_{\text{customer-name}} (\sigma_{\text{branch-name} = \text{Perryridge}} (\sigma_{\text{borrower.loan-number} = \text{loan.loan-number}} (\text{borrower x loan}))) \]

Find the largest account balance:
Rename the account relation to d
\[\Pi_{\text{balance}} (\text{account}) - \Pi_{\text{account.balance}} (\sigma_{\text{account.balance} < d.\text{balance}} (\text{account x } \rho_{d} (\text{account}))) \]

Find largest account balance(balance), assume \{(1), (2), (3)\}
Rename the account relation to d
\[\Pi_{\text{balance}} (\text{account}) - \Pi_{\text{account.balance}} (\sigma_{\text{account.balance} < d.\text{balance}} (\text{account x } \rho_{d} (\text{account}))) \]
Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

\[\Pi_{F_1, F_2, \ldots, F_n}(E) \]

- \(E \) is any relational-algebra expression

- Each of \(F_1, F_2, \ldots, F_n \) are arithmetic expressions involving constants and attributes in the schema of \(E \).

- Given relation \(\text{instructor}(ID, \text{name}, \text{dept_name}, \text{salary}) \) where salary is annual salary, get the same information but with monthly salary

\[\Pi_{ID, \text{name}, \text{dept_name}, \text{salary}/12}(\text{instructor}) \]

Aggregate Functions and Operations

- **Aggregation function** takes a collection of values and returns a single value as a result.

 - \(\text{avg} \): average value
 - \(\text{min} \): minimum value
 - \(\text{max} \): maximum value
 - \(\text{sum} \): sum of values
 - \(\text{count} \): number of values

- **Aggregate operation** in relational algebra

\[G_1, G_2, \ldots, G_n \bar{G} F_1(A_i), F_2(A_2), \ldots, F_n(A_n)(E) \]

\(E \) is any relational-algebra expression

- \(G_1, G_2, \ldots, G_n \) is a list of attributes on which to group (can be empty)
- Each \(F_i \) is an aggregate function
- Each \(A_i \) is an attribute name

- Note: Some books/articles use \(\gamma \) instead of \(\bar{G} \) (Calligraphic \(G \))
Aggregate Operation – Example

- Relation r:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>7</td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>7</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>3</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>10</td>
</tr>
</tbody>
</table>

$G_{\text{sum}(c)}(r)$

<table>
<thead>
<tr>
<th>sum(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
</tr>
</tbody>
</table>

Aggregate Operation – Example

- Find the average salary in each department $\text{ dept}_{\text{name}} G_{\text{avg}(\text{salary})}(\text{instructor})$

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>dept_name</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>96345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dept_name</th>
<th>avg_salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>77333</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>Finance</td>
<td>85000</td>
</tr>
<tr>
<td>History</td>
<td>61000</td>
</tr>
<tr>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>Physics</td>
<td>91000</td>
</tr>
</tbody>
</table>
Aggregate Functions (Cont.)

- Result of aggregation does not have a name
 - Can use rename operation to give it a name
 - For convenience, we permit renaming as part of aggregate operation

\[\text{dept_name } \bigstar \text{avg(salary) as avg_sal}^{\text{instructor}} \]

Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating
- All these operations can be expressed using the assignment operator

\[
\begin{align*}
temp1 & \leftarrow R \times S \\
temp2 & \leftarrow \sigma_{r.A_1 = s.A_1 \land r.A_2 = s.A_2 \land \ldots \land r.A_n = s.A_n} (temp1) \\
result & = \Pi_{R \cup S} (temp2)
\end{align*}
\]

The result of \(R \times S \) potentially has duplicated attributes. For example, \(r(A,B) \times s(B,C) \) results in tuples w/ attributes \((A, B, B, C)\). \(\Pi_{R \cup S} \) gets rid of the extra \(B \). Duplicated tuples are an entirely different thing, and are not present in the relational algebra.
Multiset Relational Algebra

- Pure relational algebra removes all duplicates
 - e.g. after projection
- Multiset relational algebra retains duplicates, to match SQL semantics
 - SQL duplicate retention was initially for efficiency, but is now a feature
- Multiset relational algebra defined as follows
 - selection: has as many duplicates of a tuple as in the input, if the tuple satisfies the selection
 - projection: one tuple per input tuple, even if it is a duplicate
 - cross product: If there are m copies of t_1 in r, and n copies of t_2 in s, there are $m \times n$ copies of $t_1.t_2$ in $r \times s$
 - Other operators similarly defined
 - E.g. union: $m + n$ copies, intersection: $\min(m, n)$ copies
 - difference: $\min(0, m - n)$ copies

Today’s Plan

- Quiz 3
- Exam
- Entity-Relationship Diagrams
Terms

• **monotonic** queries
 • Do not lose tuples as more data arrives (think streaming queries)

• **table function**
 • returns set of tuples
 • used anywhere a table is used

Quiz 3: tough problems

• 2. `((NULL = 20) or (10 = 10)) and ((NULL = 10) is unknown)`
 • true

• 9. “select A, max(B) from R” mixing scalar and non-scalar (no groupby for A)

• 12.

> Are the following two queries equivalent? Why or Why not? Assume R.a is an integer attribute.
> 1. select * from R where R.a > 1;
> 2. (select * from R) except (select * from R where R.a <= 1);

• Check what happens if all A are nulls
Quiz 3: tough problems

Q15
0.2 Points

For three relations R(A, B), S(B, C), T(C, D), write relational algebra expressions to generate the following relations:

1. Q1(A, D) where R and S are joined on condition R.B > S.B, and S and T have a natural join.
2. Q2(A, C) to find all (A, C) pairs such that R.B = S.B, and S.C does not have a matching tuple in T.

In both cases, use only the basic relational operations.

EXPLANATION

Q1 ← \(\pi_{A,D} (\sigma_{R.B > S.B}(R \times S) \bowtie T) \)
Q2 ← \(\pi_{A,C} ((R \bowtie S) \bowtie T) \)
Entity-Relationship Model

Two key concepts

• **Entities:**
 - An object that *exists* and is *distinguishable* from other objects
 - Examples: Bob Smith, BofA, CMSC424
 - Have **attributes** (people have names and addresses)
 - Form **entity sets** with other entities of the same type that share the same properties
 - Set of all people, set of all classes
 - Entity sets may overlap
 - Customers and Employees
Two key concepts

- **Relationships:**
 - Relate 2 or more entities
 - E.g. Bob Smith *has account at* College Park Branch
 - Form *relationship sets* with other relationships of the same type that share the same properties
 - Customers *have accounts at* Branches
 - Can have attributes:
 - *has account at* may have an attribute *start-date*
 - Can involve more than 2 entities
 - Employee *works at* Branch *at* Job

Baby ER Diagrams (illustration only, do not use)

- Rectangles: entity sets
- Diamonds: relationship sets
- Ellipses: attributes
Rest of the class

- Details of the ER Model
 - How to represent various types of constraints/semantic information etc.

- Design issues

- A detailed example

Next: Relationship Cardinalities

- We may know:
 - One customer can only open one account
 - OR
 - One customer can open multiple accounts

- Representing this is important

- Why?
 - Better manipulation of data
 - If former, can store the account info in the customer table
 - Can enforce such a constraint
 - “Application logic will handle it” NOT GOOD
 - If not represented in conceptual model, domain knowledge can easily be lost
Mapping Cardinalities

- Express the number of entities to which another entity can be associated via a relationship set
- Most useful in describing binary relationship sets
- N-ary relationships?
 - More complicated
 - Details in the book

- One-to-One
- One-to-Many
- Many-to-One
- Many-to-Many
Next: Types of Attributes

- Simple vs Composite
 - Single value per attribute?
 - Are parts accessed separately?
 - e.g. accessing first and last names from name

- Single-valued vs Multi-valued
 - E.g. Phone numbers are multi-valued

- Derived
 - If date-of-birth is present, age can be derived
 - Can help in avoiding redundancy, enforcing constraints etc...