Functional Dependencies continued

Outline

- Relational Algebra (6.1)
- E/R Model (7.2 - 7.4)
- E/R Diagrams (7.5)
- Reduction to Schema (7.6)
- Relational Database Design (7.7)
- Functional Dependencies (8.1 – 8.4)
- Normalization (8.5 – 8.7)
2. Closure of an attribute set

- Given a set of attributes \(\alpha \) and a set of FDs \(F \), closure of \(\alpha \) under \(F \) is the set of all attributes implied by \(\alpha \).
- In other words, the largest \(\beta \) such that: \(\alpha \rightarrow \beta \)
- Redefining super keys:
 - *The closure of a super key is the entire relation schema*
- Redefining candidate keys:
 - It is a super key
 - No subset of it is a super key

Computing the closure for \(\alpha \)

- Simple algorithm:
 1. Start with \(\beta = \alpha \).
 2. Go over all functional dependencies, \(\delta \rightarrow \gamma \), in \(F^+ \)
 3. If \(\delta \subseteq \beta \), then
 - Add \(\gamma \) to \(\beta \)
 4. Repeat till \(\beta \) stops changing
Example

- $F = \{ A \rightarrow B$
 - $A \rightarrow C$
 - $CG \rightarrow H$
 - $CG \rightarrow I$
 - $B \rightarrow H\}$

- $(AG)^+$?
 - 1. $\beta = AG$
 - 2. $\beta = ABG$ (A \rightarrow B and A \subseteq AG)
 - 3. $\beta = ABCG$ (A \rightarrow C and A \subseteq ABG)
 - 4. $\beta = ABCGH$ (CG \rightarrow H and CG \subseteq ABCG)
 - 5. $\beta = ABCGHI$ (CG \rightarrow I and CG \subseteq ABCGH)
 - done

- Is (AG) a candidate key?
 - 1. It is a super key.
 - 2. $(A^+) = ABCH$, $(G^+) = G$.
 - YES.

Uses of attribute set closures

- Determining superkeys and candidate keys

- Determining if $\alpha \rightarrow \beta$ is a valid FD
 - Does α^+ contain β?

- Can be used to compute F^+
3. Extraneous Attributes

Consider F, and a functional dependency, $\alpha \rightarrow \beta$.

“Extraneous”: Any attributes in α or β that can be safely removed?

Without changing the constraints implied by F

- σ is extraneous in α if:
 1. σ is in α, and
 - F logically implies F' (show that F implies $(\alpha - \sigma) \rightarrow \beta$)
 - where $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - \sigma) \rightarrow \beta\}$, or
 2. show $(\alpha - \sigma)^+$ includes β under F

- σ is extraneous in β if:
 1. σ is in β, and
 - F' logically implies F, and
 - $F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - \sigma)\}$
 2. show α^+ includes σ under F'

Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$, show C extra in $AB \rightarrow CD$

- $F' = \{A \rightarrow C, AB \rightarrow D\}$

- Using Armstrong’s:
 (show $F' \rightarrow F$)
 - We know:
 - $AB \rightarrow D$ (F')
 - $ABC \rightarrow CD$ (aug)
 - also:
 - $A \rightarrow C$ (F')
 - $AB \rightarrow BC$ (aug w/ B)
 - $AB \rightarrow ABC$ (aug w/ A)
 - then:
 - $AB \rightarrow ABC \rightarrow CD$ (trans)

done.

σ is extraneous in α iff:
$F \rightarrow F'$, or
$(\alpha - \sigma)^+$ includes β under F

σ is extraneous in β iff:
$F' \rightarrow F$, or
α^+ includes σ in F'
3. Extraneous Attributes

- **Example:** Given \(F = \{ A \rightarrow C, AB \rightarrow CD \}, \) *show C extra in AB \(\rightarrow \) CD*
 - \(F' = \{ A \rightarrow C, AB \rightarrow D \} \)
 - Using Armstrong’s:
 - (show \(F' \rightarrow F \))
 - We know:
 - \(AB \rightarrow D \) \((F') \)
 - \(ABC \rightarrow CD \) \(\text{(aug)} \)
 - also:
 - \(A \rightarrow C \) \((F') \)
 - \(AB \rightarrow BC \) \(\text{(aug w/ B)} \)
 - \(AB \rightarrow ABC \) \(\text{(aug w/ A)} \)
 - then:
 - \(AB \rightarrow ABC \rightarrow CD \) \(\text{(trans)} \)
 - done.
 - Attribute closures (show \(\alpha + \) includes \(C \) under \(F' \)):
 - \((AB)^+ = AB \)
 - \(= ABC \quad \text{(A \rightarrow C)} \)
 - done.

3. Extraneous Attributes

- **Example:** Given \(F = \{ A \rightarrow BE, B \rightarrow C, C \rightarrow D, AC \rightarrow DE \}, \) *remove extraneous attributes*
 - For left side of \(AC \rightarrow DE \)
 - A extraneous?
 - NO: \(C^+ = CD, \) NOT include DE
 - C extraneous?
 - YES: \(A^+ = ABCDE, \) includes DE
 - Now \(F = A \rightarrow BE, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - For right side,
 - B extraneous in \(A \rightarrow BE \)?
 - \(F' = A \rightarrow E, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - NO: \(A' = ADE, \) not include B.
 - E extraneous in \(A \rightarrow BE \)?
 - \(F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - YES: \(A^+ = ABCDE, \) includes E.
 - Now \(F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow DE \)
 - D extraneous in right side of \(A \rightarrow DE ? \)
 - \(F' = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E \)
 - YES: \(A^+ = ABCDE, \) so does include D
 - Now \(F = A \rightarrow B, B \rightarrow C, C \rightarrow D, A \rightarrow E \)

\[\sigma \text{ is extraneous in } \alpha \text{ iff:} \]
\[F \rightarrow F', \text{ or} \]
\[(\alpha - \sigma)^* \text{ includes } \beta \text{ under } F \]

\[\sigma \text{ is extraneous in } \beta \text{ iff:} \]
\[F' \rightarrow F, \text{ or} \]
\[\alpha^+ \text{ includes } \sigma \text{ in } F' \]
4. Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique

- In some (vague) sense, it is a minimal version of F

- Create as follows:
 - **repeat**
 1. use union rule to merge right sides
 2. eliminate extraneous attributes
 - until F_c does not change

\[A \rightarrow B, A \rightarrow C, C \rightarrow D, AC \rightarrow BD \]

\[
\text{Cover:}
\]

\[
\begin{align*}
\text{A} & \rightarrow \text{B}, \text{A} \rightarrow \text{C}, \text{C} \rightarrow \text{D}, \text{AC} \rightarrow \text{BD} \\
\text{A} & \rightarrow \text{BC}, \text{C} \rightarrow \text{D}, \text{AC} \rightarrow \text{BD} \quad \text{(union)} \\
\text{A} & \rightarrow \text{BC}, \text{C} \rightarrow \text{D}, \text{A} \rightarrow \text{BD} \\
\text{A} & \rightarrow \text{BCD}, \text{C} \rightarrow \text{D} \quad \text{(union)} \\
\text{A} & \rightarrow \text{B} \text{C} \text{D, C} \rightarrow \text{D} \\
\text{A} & \rightarrow \text{B} \text{C} \text{D, C} \rightarrow \text{D} \quad \text{(union)} \\
\end{align*}
\]

- σ is extraneous in α iff:
 - $F \rightarrow F'$, or
 - $(\alpha - \sigma)^* \text{ includes } \beta \text{ under } F$

- σ is extraneous in β iff:
 - $F' \rightarrow F$, or
 - $\alpha^* \text{ includes } \sigma \text{ in } F'$
Mechanisms and definitions to work with FDs
- Closures, candidate keys, canonical covers etc...
- Armstrong axioms

Decompositions
- Loss-less decompositions, Dependency-preserving decompositions

BCNF
- How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

Loss-less Decompositions

Definition: A decomposition of R into (R_1, R_2) is called *lossless* if, for all legal instance of $r(R)$:

$\quad r = \Pi_{R_1} (r) \bowtie \Pi_{R_2} (r)$

or

$\quad \text{(select * from (select R1 from r) natural join (select R2 from r))}$

In other words, projecting on R_1 and R_2, and joining back, results in the relation you started with

Rule: A decomposition of R into (R_1, R_2) is lossless, iff:

$\quad R_1 \cap R_2 \rightarrow R_1$ or $\quad R_1 \cap R_2 \rightarrow R_2$

in F^*.

$(R_1 \cap R_2)$ must be key for R_1 or R_2
Dependency-preserving Decompositions

- Is it easy to check if dependencies in F hold?
 - Yes if dependencies can be checked in the same table.

- Consider $R = (A, B, C)$, and $F = \{A \rightarrow B, B \rightarrow C\}$

- 1. Decompose into $R_1 = (A, B)$, and $R_2 = (A, C)$
 - Lossless?
 - Yes: $AB \cap AC = A$, which is a key for R_1
 - But harder to check for $B \rightarrow C$ as the data is in multiple tables.

- 2. On the other hand, $R_1 = (A, B)$, and $R_2 = (B, C)$,
 - is both lossless and dependency-preserving

Definition:

- Consider decomposition of R into R_1, ..., R_n.
- Let F_i be dependencies using just attributes in R_i.

- The decomposition is dependency preserving, if
 $$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$
Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
 - 3NF: Solves the above problem
- BCNF allows for redundancy
 - 4NF: Solves the above problem

Normalization
BCNF

- Recall that R is in BCNF if every FD, $\alpha \rightarrow \beta$, is either:
 1. Trivial, or
 2. α is a superkey of R
- *No redundancy*

- What if the schema is not in BCNF?
 - Decompose (split) the schema into two pieces.
 - Careful: you want the decomposition to be lossless

Achieving BCNF Schemas

- For all dependencies $\alpha \rightarrow \beta$ in F^+, check if α is a superkey
 - (attribute closure)

- If not, then
 - Choose a dependency in F^+ that breaks the BCNF rules, say $\alpha \rightarrow \beta$
 - Create $R_1 = \alpha\beta$
 - Create $R_2 = R - (\beta - \alpha)$.
 - Note that: $R_1 \cap R_2 = \alpha$ and $\alpha \rightarrow \alpha\beta$, so:
 - α is a superkey of R_1
 - lossless decomposition

- Repeat for R_1, and R_2
 - Define F_i to be all dependencies in F^+ that contain only attributes in R_i

Note:

$(R - (\beta - \alpha)) = (R - \beta)$

if no extraneous attributions in FDs

We use $(R - \beta)$ in this course.
Achiving BCNF Schemas

Example 1

\[R = (A, B, C) \]
\[F = \{ A \rightarrow B, B \rightarrow C \} \]
Candidate keys = \{A\}

BCNF? No. B \rightarrow C violates.

\[B \rightarrow C \]

R1 = (B, C)
F1 = \{ B \rightarrow C \}
Candidate keys = \{B\}
BCNF = true

R2 = (A, B)
F2 = \{ A \rightarrow B \}
Candidate keys = \{A\}
BCNF = true

Dependency preservation ???
Yes

Example 2a

\[R = (A, B, C, D, E) \]
\[F = \{ A \rightarrow B, BC \rightarrow D \} \]
Candidate keys = \{ACE\}

BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\}

\[A \rightarrow B \]

R1 = (A, B)
F1 = \{ A \rightarrow B \}
Candidate keys = \{A\}
BCNF = true

R2 = (A, C, D, E)
F2 = \{ \}
Candidate keys = \{ACDE\}
BCNF = true

Dependency preservation ???
No: lost BC \rightarrow D
\[R = (A, B, C, D, E) \]
\[F = \{ A \rightarrow B, BC \rightarrow D \} \]
Candidate keys = \{ACE\}
BCNF = Violated by \{A \rightarrow B, BC \rightarrow D\} etc…

\[A \rightarrow B \]

\[R1 = (A, B) \]
\[F1 = \{ A \rightarrow B \} \]
Candidate keys = \{A\}
BCNF = true

\[R2 = (A, C, D, E) \]
\[F2 = \{ \} \]
Candidate keys = \{ACDE\}
BCNF = true

Dependency preservation ???
No: we lost BC \rightarrow D
So this is not a dependency-preserving decomposition.